Part Number Hot Search : 
M0765RG 32182 GL41B 2SD745 AZ7121 FP1011A C03BD MM3Z5545
Product Description
Full Text Search
 

To Download APW7068ME-TYL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 f e a t u r e s a p p l i c a t i o n s g e n e r a l d e s c r i p t i o n the apw7068 integrates synchronous buck pwm, linear controller, and 0.8v reference out voltage, as well as the monitoring and protection functions into a single package. the fixed 300khz switching frequency synchronous pwm controller drives dual n-channel mosfets, which provides one controlled power output with over- voltage and over-current protections. linear controller drives an external n-channel mosfet with under-voltage protection. the apw7068 provides excellent regulation for output load variation. an internal 0.8v temperature- compensated reference voltage is designed to meet the requirement of low output voltage applications. the apw7068 with excellent protection functions: por, ocp, ovp and uvp. the power-on reset (por) circuit can monitor vcc12 supply voltage exceeds its threshold voltage while the controller is running, and a built-in digital soft-start provides both outputs with controlled rising voltage. the over-current protection (ocp) monitors the output current by using the voltage drop across the lower mosfet?s r ds(on) , comparing with the voltage of ocset pin. when the out- put current reaches the trip point, the controller will shutdown the ic directly, and latch the converter?s output. the under-voltage protection (uvp) monitors the voltage of fbl pin for short-circuit protection. when the v fbl is less than 50% of v ref , the controller will shutdown the ic directly. the over-voltage protection (ovp) monitors the voltage of fb. when the v fb is over 135% of v ref , the controller will make low- side gate signal fully turn on until the fault events are removed. g r a p h i c c a r d s s y n c h r o n o u s b u c k p w m a n d l i n e a r c o n t r o l l e r w i t h 0 . 8 v r e f e r e n c e o u t v o l t a g e a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . two regulated voltages and ref_out - s y n c h r o n o u s b u c k c o n v e r t e r - l i n e a r r e g u l a t o r - r e f _ o u t = 0 . 8 v 1% with 3ma s o u r c e c u r r e n t s i n g l e 1 2 v p o w e r s u p p l y r e q u i r e d e x c e l l e n t b o t h o u t p u t v o l t a g e r e g u l a t i o n - 0 . 8 v i n t e r n a l r e f e r e n c e - 1% over l i n e v o l t a g e a n d t e m p e r a t u r e i n t e g r a t e d s o f t - s t a r t f o r p w m a n d l i n e a r o u t p u t s 3 0 0 k h z f i x e d s w i t c h i n g f r e q u e n c y v o l t a g e m o d e p w m c o n t r o l d e s i g n a n d u p t o 8 9 % ( t y p . ) d u t y c y c l e u n d e r - v o l t a g e p r o t e c t i o n m o n i t o r i n g l i n e a r o u t p u t o v e r - v o l t a g e p r o t e c t i o n m o n i t o r i n g p w m o u t p u t o v e r - c u r r e n t p r o t e c t i o n f o r p w m o u t p u t - s e n s e l o w - s i d e m o s f e t ? s r d s ( o n ) s o p - 1 4 , q s o p - 1 6 a n d q f n - 1 6 p a c k a g e s lead free available (rohs compliant)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 p i n o u t s 1 3 2 4 6 5 7 8 b o o t f s _ d i s drive fb comp a g n d fbl d g n d u g a t e p h a s e ocset lgate pgnd v c c 1 2 ref_out v c c 1 2 qfn-16 top view 12 10 11 9 15 16 14 13 metal gnd pad (bottom) 1 3 2 4 6 5 7 8 boot fs_dis drive fb comp gnd fbl gnd 16 14 15 13 11 12 9 ugate phase ocset lgate pgnd vcc12 ref_out vcc12 qsop-16 top view 10 drive 1 3 2 4 6 5 7 boot fs_dis fb comp gnd fbl 14 12 13 11 9 10 8 ugate phase ocset lgate pgnd vcc12 ref_out sop-14 top view o r d e r i n g a n d m a r k i n g i n f o r m a t i o n n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s a n d c o m p a t i b l e w i t h b o t h s n p b a n d l e a d - f r e e s o l d e r i n g o p e r a t i o n s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j s t d - 0 2 0 c f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . apw7068 handling code temp. range package code apw7068 k : apw7068 xxxxx xxxxx - date code lead free code apw7068 q : apw7068 xxxxx xxxxx - date code apw7068 m : apw7068 xxxxx xxxxx - date code package code k : sop - 14 m : qsop - 16 qa : qfn - 16 temp. range e : -20 to 70 c handling code tu : tube tr : tape & reel ty : tray (for qfn only) lead free code l : lead free device blank : original device
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 3 b l o c k d i a g r a m gnd gate control soft start and fault logic power-on reset phase lgate fb vcc12 ugate v ref 135%v ref o.c.p comparator pwm comparator o.v.p comparator x1.35 comp boot v ref 50%v ref : 2 fbl drive oscillator fs_dis u.v.p comparator pgnd i ocset 40ua ocset regulator 10v v ref (0.8v) 10 v error amp 1 error amp 2 sawtooth wave (300khz) reference buffer ref_out sense low side a b s o l u t e m a x i m u m r a t i n g s symbol parameter rating unit v cc12 vcc 12 to gnd - 0.3 to +16 v boot boot to phase - 0.3 to +16 v ugate ugate to phase <400ns pulse width >400ns pulse width - 5 to boot+5 - 0.3 to boot+0.3 v lgate lgate to p gnd <400ns pulse width >400ns pulse width - 5 to vcc12+5 - 0.3 to vcc12 +0.3 v phase phase to gnd <400ns pulse width >400ns pulse width - 5 to +21 - 0.3 to 16 v drive drive to gnd 12 v fb, fbl, comp, fs_dis fb, fbl, comp, fs_dis to gnd - 0.3 to 7 v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 4 a b s o l u t e m a x i m u m r a t i n g s ( c o n t . ) symbol parameter rating unit v cc12 ic supply voltage 10.8 to 13.2 v v in1 converter input voltage 2.9 to 13.2 v v out1 converter output voltage 0. 9 to 5 v i out1 converter output current 0 to 30 a i out2 linear output current 0 to 3 a t a ambient temperat ure range - 20 to 70 c t j junction temperature range - 2 0 to 125 c r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s u n l e s s o t h e r w i s e s p e c i f i e d , t h e s e s p e c i f i c a t i o n s a p p l y o v e r v c c 1 2 = 1 2 v , a n d t a = - 2 0 ~ 7 0 c . t y p i c a l v a l u e s a r e a t t a = 2 5 c . e l e c t r i c a l c h a r a c t e r i s t i c s apw706 8 symbol parameter test conditions min typ max unit input supply current vcc12 supply current (shutdown mode) ugat e, lgate and drive open; fs_dis= gnd 4 6 ma i cc12 vcc12 supply current ugate, lgate and drive open 8 12 ma power - on reset r ising vcc12 threshold 7.7 7.9 8.1 v falling vcc12 threshold 7.2 7.4 7.6 v oscillator accuracy - 15 +15 % f osc oscillator frequency 255 300 345 khz v osc ramp amplitude (nominal 1.2v to 2.7v) (note3) 1 .5 v duty maximum duty cycle 89 % symbol parameter rating unit pgnd pgnd to gnd - 0.3 to +0.3 v t j junction temperature range - 20 to +150 c t stg storage temperature - 65 ~ 150 c t sdr soldering temperature (10 seconds) 300 c v esd minimum esd rating 2 kv n o t e 1 : a b s o l u t e m a x i m u m r a t i n g s a r e t h o s e v a l u e s b e y o n d w h i c h t h e l i f e o f a d e v i c e m a y b e i m p a i r e d . e x p o s u r e t o a b s o l u t e m a x i m u m r a t i n g c o n d i t i o n s f o r e x t e n d e d p e r i o d s m a y a f f e c t d e v i c e r e l i a b i l i t y . n o t e 2 : t h e d e v i c e i s e s d s e n s i t i v e . h a n d l i n g p r e c a u t i o n s a r e r e c o m m e n d e d .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 5 u n l e s s o t h e r w i s e s p e c i f i e d , t h e s e s p e c i f i c a t i o n s a p p l y o v e r v c c 1 2 = 1 2 v , a n d t a = - 2 0 ~ 7 0 c . t y p i c a l v a l u e s a r e a t t a = 2 5 c . e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apw706 8 symbol parameter test conditions min typ max unit reference v ref reference voltage for error amp1 and amp2 0.792 0.80 0.808 v reference voltage tolerance - 1 +1 % pwm load regulation i out 1 = 0 to 10a 1 % linear load regulation i out 2 = 0 to 3a 1 % pwm e rr or amplifier gain open loop gain r l = 10k, c l = 10p f (note3 ) 93 db gbwp open loop bandwidth r l = 10k, c l = 10p f (note3 ) 20 mhz sr slew rate r l = 10k, c l = 10p f (note3 ) 8 v/us fb input current v fb = 0.8v 0.1 1 ua v co mp comp high voltage 5 v v co mp comp low voltage 0 v i comp comp source current comp= 2v 12 ma i comp comp sink current comp= 2v 12 ma gate drivers i ugate upper gate source current 2.5 a i ugate upper gate s ink current boot = 12 v, ugate - phase = 2 v 2 a i lgate lo w er gate source current 2.5 a i lgate low er gate s ink current vcc12 = 12 v, lgate = 2 v 3.5 a r ugate upper gate s ource impedance boot= 12v, i ugate =0. 1 a 2.25 3.375 w r ugate upper gate sink impedance boot= 12v, i ugate =0. 1 a 0.7 1.05 w r l gate lower gate sour ce impedance vcc12= 12v, i l gate =0. 1 a 2.25 3.375 w r lgate lower gate sink impedance vcc12= 12v, i l gate =0. 1 a 0.4 0.6 w t d dead time 20 ns linear regulator gain open loop gain r l = 10k, c l = 10p f (note3 ) 70 db gbwp open loop bandwidth r l = 10k, c l = 10p f ( note3 ) 19 mhz sr slew rate r l = 10k, c l = 10p f (note3 ) 6 v/us fbl input current v fbl = 0.8 v 0.1 1 u a v drive drive high voltage 10 v v drive drive low voltage 0 v i drive drive source current drive= 5v 4 ma i drive drive sink current drive= 5v 3 ma
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 6 u n l e s s o t h e r w i s e s p e c i f i e d , t h e s e s p e c i f i c a t i o n s a p p l y o v e r v c c 1 2 = 1 2 v , a n d t a = - 2 0 ~ 7 0 c . t y p i c a l v a l u e s a r e a t t a = 2 5 c . e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apw706 8 symbol parameter test conditions min typ max unit protection v fb - o v fb ov er voltage protection trip point percent of v ref 135 % v fbl - uv fbl under voltage protection trip point percent of v ref 50 % i oc set ocset current source 3 6 40 4 4 ua soft start t ss internal soft - star t interval (note3) f osc = 300khz 8.5 m s ref _ out v ref _ out output voltage 0.792 0.800 0.808 v offset voltage - 8 +8 mv i ref _ out source current 1.5 3 ma sink current 0.25 0.5 ma output capacitance 0.4 1 2 .2 uf t y p i c a l a p p l i c a t i o n c i r c u i t 1 3 2 4 6 5 7 boot fs_dis drive fb comp gnd fbl 14 12 13 11 9 10 8 ugate phase ocset lgate pgnd vcc12 ref_out vout1 vin1 12v vout2 vin2 vout1 on/off c1 c2 r2 r1 r3 c3 r4 r5 r gnd1 r gnd2 c5 l c out1 c out2 q1 q2 c in1 c in2 c 6 r 6 c 7 r7 c 8 apw7068 q3 2n7002 c 4 r8 apm2509 470ufx2 1uh 0.1uf 3.9k 0.01uf 2.2nf 22nf 1.5k 22 w 3k 470uf 2.5v 2.5k 1.17k 470uf 1uf 1uf 2.2 w apm2506 2.2 w 2.2nf 470ufx2 q4 apm3055 3.3v 1.2v 12v * c5, r5 for specific application n o t e 3 : g u a r a n t e e d b y d e s i g n .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 7 f u n c t i o n p i n d e s c r i p t i o n s v c c 1 2 p o w e r s u p p l y i n p u t p i n . c o n n e c t a n o m i n a l 1 2 v p o w e r s u p p l y t o t h i s p i n . t h e p o w e r - o n r e s e t f u n c t i o n m o n i t o r s t h e i n p u t v o l t a g e a t t h i s p i n . i t i s r e c o m m e n d e d t h a t a d e c o u p l i n g c a p a c i t o r ( 1 t o 1 0 m f ) b e c o n n e c t e d t o g n d f o r n o i s e d e c o u p l i n g . b o o t t h i s p i n p r o v i d e s t h e b o o t s t r a p v o l t a g e t o t h e u p p e r g a t e d r i v e r f o r d r i v i n g t h e n - c h a n n e l m o s f e t . a n e x t e r n a l c a p a c i t o r f r o m p h a s e t o b o o t , a n i n t e r n a l d i o d e , a n d t h e p o w e r s u p p l y v a l t a g e v c c 1 2 , g e n e r a t e s t h e b o o t s t r a p v o l t a g e f o r t h e u p p e r g a t e d i v e r ( u g a t e ) . p h a s e t h i s p i n i s t h e r e t u r n p a t h f o r t h e u p p e r g a t e d r i v e r . c o n n e c t t h i s p i n t o t h e u p p e r m o s f e t s o u r c e , a n d c o n n e c t a c a p a c i t o r t o b o o t f o r t h e b o o t s t r a p v o l t a g e . t h i s p i n i s a l s o u s e d t o m o n i t o r t h e v o l t a g e d r o p a c r o s s t h e l o w e r m o s f e t f o r o v e r - c u r r e n t p r o t e c t i o n . g n d t h i s p i n i s t h e s i g n a l g r o u n d p i n . c o n n e c t t h e g n d p i n t o a g o o d g r o u n d p l a n e . p g n d t h i s p i n i s t h e p o w e r g r o u n d p i n f o r t h e l o w e r g a t e d r i v e r . i t s h o u l d b e t i e d t o g n d p i n o n t h e b o a r d . c o m p t h i s p i n i s t h e o u t p u t o f p w m e r r o r a m p l i f i e r . i t i s u s e d t o s e t t h e c o m p e n s a t i o n c o m p o n e n t s . f b t h i s p i n i s t h e i n v e r t i n g i n p u t o f t h e p w m e r r o r a m p l i f i e r . i t i s u s e d t o s e t t h e o u t p u t v o l t a g e a n d t h e c o m p e n s a t i o n c o m p o n e n t s . t h i s p i n i s a l s o m o n i t o r e d f o r o v e r - v o l t a g e p r o t e c t i o n . w h e n t h e f b v o l t a g e i s o v e r 1 3 5 % o f r e f e r e n c e v o l t a g e , t h e c o n t r o l l e r w i l l m a k e l o w - s i d e g a t e s i g n a l f u l l y t u r n o n u n t i l t h e f a u l t e v e n t s a r e r e m o v e d . u g a t e t h i s p i n i s t h e g a t e d r i v e r f o r t h e u p p e r m o s f e t o f p w m o u t p u t . ref_out this pin provides a buffed voltage, which is from internal reference voltage. it is recommended that a 1uf capacitor is connected to ground for stability. fs_dis this pin provides shutdown function. use an open drain logic signal to pull this pin low to disable both outputs, leave open to enable both outputs. side) (l r r i i ow ds(on) ocset ocset limit - = l g a t e t h i s p i n i s t h e g a t e d r i v e r f o r t h e l o w e r m o s f e t o f p w m o u t p u t . d r i v e t h i s p i n d r i v e s t h e g a t e o f a n e x t e r n a l n - c h a n n e l m o s f e t f o r l i n e a r r e g u l a t o r . i t i s a l s o u s e d t o s e t t h e c o m p e n s a t i o n f o r s o m e s p e c i f i c a p p l i c a t i o n s , f o r e x a m p l e , w i t h l o w v a l u e s o f o u t p u t c a p a c i t a n c e a n d e s r . f b l t h i s p i n i s t h e i n v e r t i n g i n p u t o f t h e l i n e a r r e g u l a t o r e r r o r a m p l i f i e r . i t i s u s e d t o s e t t h e o u t p u t v o l t a g e . t h i s p i n i s a l s o m o n i t o r e d f o r u n d e r - v o l t a g e p r o t e c t i o n . w h e n t h e f b l v o l t a g e i s u n d e r 5 0 % o f r e f e r e n c e v o l t a g e ( 0 . 4 v ) , b o t h o u t p u t s w i l l b e s h u t d o w n i m m e d i a t e l y . o c s e t c o n n e c t a r e s i s t o r ( r o c s e t ) f r o m t h i s p i n t o g n d , a n i n t e r n a l 4 0 u a c u r r e n t s o u r c e w i l l f l o w t h r o u g h t h i s r e s i s t o r a n d c r e a t e a v o l t a g e d r o p . w h e n v c c 1 2 r e a c h e s t h e p o r r i s i n g t h r e s h o l d v o l t a g e , t h e v o l t a g e d r o p o f r o c s e t w i l l b e m e m o r i e d a n d c o m p a r e d w i t h t h e v o l t a g e a c r o s s t h e l o w e r m o s f e t . t h e t h r e s h o l d o f t h e o v e r c u r r e n t l i m i t i s t h e r e f o r e g i v e n b y :
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 8 t y p i c a l c h a r a c t e r i s t i c s c h 1 : v c c 1 2 ( 1 0 v / d i v ) c h 2 : v o 1 ( 1 v / d i v ) c h 3 : v o 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v c h 1 : v c c 1 2 ( 1 0 v / d i v ) c h 2 : v o 1 ( 1 v / d i v ) c h 3 : v o 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v c h 1 : f s _ d i s ( 1 v / d i v ) c h 2 : d r i v e ( 5 v / d i v ) c h 3 : v o 1 ( 1 v / d i v ) c h 4 : v o 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v c h 1 : f s _ d i s ( 1 v / d i v ) c h 2 : d r i v e ( 5 v / d i v ) c h 3 : v o 1 ( 1 v / d i v ) c h 4 : v o 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v p o w e r o n p o w e r o f f e n s h u t d o w n ( f s _ d i s = g n d ) v c c 1 2 = 1 2 v , v i n 1 = 1 2 v , v i n 2 = 3 . 3 v v o 1 = 1 . 2 v , v o 2 = 2 . 5 v , l = 1 u h c h 3 c h 2 c h 1 c h 3 c h 2 c h 1 v c c 1 2 = 1 2 v , v i n 1 = 1 2 v , v i n 2 = 3 . 3 v v o 1 = 1 . 2 v , v o 2 = 2 . 5 v , l = 1 u h c h 3 c h 2 c h 1 c h 4 c h 3 c h 2 c h 1 c h 4 v c c 1 2 = 1 2 v , v i n 1 = 1 2 v , v i n 2 = 3 . 3 v v o 1 = 1 . 2 v , v o 2 = 2 . 5 v , l = 1 u h v c c 1 2 = 1 2 v , v i n 1 = 1 2 v , v i n 2 = 3 . 3 v v o 1 = 1 . 2 v , v o 2 = 2 . 5 v , l = 1 u h
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 9 t y p i c a l c h a r a c t e r i s t i c s ( c o n t . ) c h 1 : v c c ( 2 0 v / d i v ) c h 2 : l g ( 1 0 v / d i v ) c h 3 : v o 1 ( 5 0 0 m v / d i v ) c h 4 : v o 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v c h 1 : f b l ( 1 v / d i v ) c h 2 : d r i v e ( 5 v / d i v ) c h 3 : v o 2 ( 2 v / d i v ) t i m e : 1 0 0 u s / d i v u g a t e r i s i n g u g a t e f a l l i n g o v p _ p w m c o n t r o l l e r ( f b > 1 3 5 % v r e f ) u v p _ l i n e a r r e g u l a t o r ( f b l < 5 0 % v r e f ) v c c 1 2 = 1 2 v , v i n 1 = 1 2 v v o 1 = 1 . 2 v , v o 2 = 2 . 5 v , l = 1 u h c h 3 c h 2 c h 1 c h 4 c h 3 c h 2 c h 1 v c c 1 2 = 1 2 v , v i n 2 = 3 . 3 v v o 2 = 2 . 5 v , i o 2 = 3 a c h 1 : u g ( 2 0 v / d i v ) c h 2 : p h a s e ( 1 0 v / d i v ) c h 3 : l g ( 1 0 v / d i v ) t i m e : 5 0 n s / d i v c h 1 : u g ( 2 0 v / d i v ) c h 2 : p h a s e ( 1 0 v / d i v ) c h 3 : l g ( 1 0 v / d i v ) t i m e : 5 0 n s / d i v v c c 1 2 = 1 2 v , v i n 1 = 1 2 v , v o 1 = 1 . 2 v c h 3 c h 2 c h 1 v c c 1 2 = 1 2 v , v i n 1 = 1 2 v , v o 1 = 1 . 2 v c h 3 c h 2 c h 1
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 0 t y p i c a l c h a r a c t e r i s t i c s ( c o n t . ) c h 1 : v o 1 ( 1 0 0 m v / d i v , a c ) c h 2 : u g ( 2 0 v / d i v ) c h 3 : i o 1 ( 1 0 a / d i v ) t i m e : 2 0 u s / d i v c h 1 : v o 1 ( 1 0 0 m v / d i v , a c ) c h 2 : u g ( 2 0 v / d i v ) c h 3 : i o 1 ( 1 0 a / d i v ) t i m e : 5 0 u s / d i v c h 1 : v o 1 ( 1 0 0 m v / d i v , a c ) c h 2 : u g ( 2 0 v / d i v ) c h 3 : i o 1 ( 1 0 a / d i v ) t i m e : 2 0 u s / d i v i o 1 = 0 a 1 0 a i o 1 = 0 a 1 0 a 0 a i o 1 = 1 0 a 0 a ch1 ch2 ch3 l o a d t r a n s i e n t r e s p o n s e ( p w m c o n t r o l l e r ) - v c c 1 2 = 1 2 v , v i n 1 = 1 2 v , v o 1 = 2 v , f o s c = 3 0 0 k h z - i o 1 s l e w r a t e = ? 1 0 a / u s c h 1 : v o 2 ( 1 0 0 m v / d i v , a c ) c h 2 : i o 2 ( 2 a / d i v ) t i m e : 1 u s / d i v c h 1 : v o 2 ( 1 0 0 m v / d i v , a c ) c h 2 : i o 2 ( 2 a / d i v ) t i m e : 1 0 u s / d i v c h 1 : v o 2 ( 1 0 0 m v / d i v , a c ) c h 2 : i o 2 ( 2 a / d i v ) t i m e : 1 u s / d i v i o 2 = 0 a 3 a i o 2 = 0 a 3 a 0 a i o 2 = 3 a 0 a ch1 ch2 l o a d t r a n s i e n t r e s p o n s e ( l i n e a r r e g u l a t o r ) - v c c 1 2 = 1 2 v , v i n 2 = 3 . 3 v , v o 2 = 2 . 5 v - i o 2 s l e w r a t e = ? 3 a / u s ch1 ch2 ch1 ch2 ch1 ch2 ch3 ch1 ch2 ch3
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 1 0.8005 0.801 0.8015 0.802 0.8025 0.803 0.8035 0.804 -40 -20 0 20 40 60 80 100 120 t y p i c a l c h a r a c t e r i s t i c s ( c o n t . ) c h 1 : v o 1 ( 1 v / d i v ) c h 2 : d r i v e ( 5 v / d i v ) c h 3 : u g ( 2 0 v / d i v ) c h 4 : i l ( 1 0 a / d i v ) t i m e : 5 0 u s / d i v c h 1 : v o 1 ( 1 v / d i v ) c h 2 : d r i v e ( 5 v / d i v ) c h 3 : u g ( 2 0 v / d i v ) c h 4 : i l ( 1 0 a / d i v ) t i m e : 5 0 u s / d i v c h 1 : v c c 1 2 ( 1 0 v / d i v ) c h 2 : v o 1 ( 1 v / d i v ) c h 3 : u g ( 2 0 v / d i v ) c h 4 : i l ( 1 0 a / d i v ) t i m e : 2 m s / d i v o v e r c u r r e n t p r o t e c t i o n s h o r t t e s t a f t e r p o w e r r e a d y s h o r t t e s t b e f o r e p o w e r o n c h 3 c h 2 c h 1 c h 3 c h 2 c h 1 c h 3 c h 2 c h 1 c h 4 c h 4 c h 4 vcc12=12v, vin1=12v, vo1=1.2v,vin2=3.3v, vo2=2.5v, l=1uh, rocset =1k [ , rds (on)=4m [ vcc12=12v, vin1=12v, vo1=1.2v,vin2=3.3v, vo2=2.5v, l=1uh, rocset =1k [ , rds (on)=4m [ vcc12=12v, vin1=12v,vin2=3.3v vo1=1.2v,vo2=2.5v,l=1uh v r e f v s . j u n c t i o n t e m p e r a t u r e j u n c t i o n t e m p e r a t u r e ( c ) reference voltage(v) v ref c o u t = 4 7 0 u f x 2 c o u t = 4 7 0 u f x 2 c o u t = 4 7 0 u f x 2
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 2 0 1 2 3 4 5 6 7 0 1 2 3 4 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 t y p i c a l c h a r a c t e r i s t i c s ( c o n t . ) u g a t e v o l t a g e ( v ) u g a t e s o u r c e c u r r e n t v s . u g a t e v o l t a g e ugate source current (a) u g a t e s i n k c u r r e n t v s . u g a t e v o l t a g e u g a t e v o l t a g e ( v ) ugate sink current (a) l g a t e s o u r c e c u r r e n t v s . l g a t e v o l t a g e l g a t e s i n k c u r r e n t v s . l g a t e v o l t a g e l g a t e v o l t a g e ( v ) lgate source current (a) l g a t e v o l t a g e ( v ) lgate sink current (a) vboot=12v vcc=12v vcc=12v p h a s e = 0 v p h a s e = 0 v vboot=12v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 3 f u n c t i o n d e s c r i p t i o n s power on reset (por) the power-on reset (por) function of apw7068 continually monitors the input supply voltage (vcc12), ensures the supply voltage exceed its rising por threshold voltage. the por function initiates soft-start interval operation while vcc12 voltages exceed their por threshold and inhibits operation under disabled status. s o f t - s t a r t f i g u r e 1 . s h o w s t h e s o f t - s t a r t i n t e r v a l . w h e n v c c 1 2 r e a c h e s t h e r i s i n g p o r t h r e s h o l d v o l t a g e , t h e i n t e r n a l r e f e r e n c e v o l t a g e i s c o n t r o l l e d t o f o l l o w a v o l t a g e p r o - p o r t i o n a l t o t h e s o f t - s t a r t v o l t a g e . t h e s o f t - s t a r t i n t e r - v a l i s v a r i a b l e b y t h e o s c i l l a t o r f r e q u e n c y . t h e f o r m u - l a t i o n i s g i v e n b y : f i g u r e 2 . s h o w s m o r e d e t a i l o f t h e f b a n d f b l v o l t a g e r a m p s . t h e f b a n d f b l v o l t a g e s o f t - s t a r t r a m p s a r e f o r m e d w i t h m a n y s m a l l s t e p s o f v o l t a g e . t h e v o l t a g e o f o n e s t e p i s a b o u t 2 0 m v i n f b a n d f b l , a n d t h e p e r i o d o f o n e s t e p i s a b o u t 6 4 / f o s c . t h i s m e t h o d p r o - v i d e s a c o n t r o l l e d v o l t a g e r i s e a n d p r e v e n t s t h e l a r g e p e a k c u r r e n t t o c h a r g e o u t p u t c a p a c i t o r . t h e f b v o l t - a g e c o m p a r e s t h e f b l v o l t a g e t o s h i f t t o a n e a r l i e r t i m e t h e e s t a b l i s h m e n t a s f i g u r e 2 . t h e v o l t a g e e s t a b i l i s h m e n t t i m e d i f f e r e n c e f o r f b a n d f b l i s v a r i a b l e b y t h e o s c i l l a t o r . t h e f o r m u l a t i o n i s g i v e n b y : 560 2 f 1 ) t (t t osc 1 2 ss = - d = over-current protection connect a resistor (rocset) from this pin to gnd, an internal 40ua current source will flow through this resistor and create a voltage drop, which will be compared with the voltage across the lower mosfet. when the voltage across the lower mosfet exceeds the voltage drop across the r ocset , an over-current condition is detected and the controller will shut- down the ic directly, and the converter's output is latched. f i g u r e 2 . t h e c o n t r o l l e d s t e p p e d f b a n d f b l v o l t a g e d u r i n g s o f t - s t a r t ss osc 3 4 t 4 1 6 f 1 ) t (t = = - d 40 f i g u r e 1 . s o f t - s t a r t i n t e r v a l voltage(v) time fb fbl 20mv 20mv 32/fosc 32/fosc t 3 t 4 t 1 t 2 voltage(v) time vcc12 v out2 v out1 t 0 por
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 4 side) (l r r i i ow ds(on) ocset ocset limit - = for the over-current is never occurred in the normal operating load range; the variation of all parameters in the above equation should be determined. the mosfet?s r ds(on) is varied by temperature and gate to source voltage, the user should determine the maximum r ds(on) in manufacturer?s datasheet. the minimum i ocset (36ua) and minimum r ocset should be used in the above equation. note that the i limit is the current flow through the lower mosfet; i limit must be greater than maximum output current add the half of inductor ripple current. f u n c t i o n d e s c r i p t i o n s o v e r - c u r r e n t p r o t e c t i o n ( c o n t . ) shutdown and enable pulling the fs_dis voltage to gnd by an open drain transistor, shown in typical application circuit, shutdown the apw7068 pwm controller. in shutdown phase and gnd respectively. the threshold of the over current limit is therefore given by: o v e r v o l t a g e p r o t e c t i o n under voltage protection the fb pin is monitored during converter operation mode, the ugate and lgate turn off and pull to the fbl pin is monitored during converter opera- tion by its own under voltage(uv) comparator. if the fbl voltage drop below 50% of the reference voltage (50% of 0.8v = 0.4v), a fault signal is inter- nally generated, and the device turns off both high- side and low-side mosfet and the converter?s out- put is latched to be floating. the controller will shut- down the ic directly. by its own over voltage(ov) comparator. if the fb voltage is over 135% of the reference voltage, the controller will make low-side gate signal fully turn on until the fault events are removed. a p p l i c a t i o n i n f o r m a t i o n output voltage selection the output voltage of pwm converter can be programmed with a resistive divider. use 1% or better resistors for the resistive divider is recommended. the fb pin is the inverter input of the error amplifier , and the reference voltage is 0.8v . the output voltage is determined by: ? ? ? ? ? + = gnd1 out1 r r1 1 0.8 v ? ? ? ? ? + = gnd2 out2 r r4 1 0.8 v the linear regulator output voltage v out2 is also set by means of an external resistor divider. the fbl pin is the inverter input of the error amplifier, and the reference voltage is 0.8v. the output voltage is determined by: where r4 is the resistor connected from v out2 to fbl and r gnd2 is the resistor connected from fbl to gnd. where r1 is the resistor connected from v out1 to fb and r gnd1 is the resistor connected from fb to gnd.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 5 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) linear regulator input/output capacitor selection the input capacitor is chosen based on its voltage rating. under load transient condition, the input capacitor will momentarily supply the required transient current. the output capacitor for the linear regulator is chosen to minimize any droop during load transient condition. in addition, the capacitor is chosen based on its voltage rating. linear regulator input/output mosfet selection the maximum drive voltage is about 10v when vcc12 is equal 12v. since this pin drives an external n-channel mosfet, therefore the maximum output voltage of the linear regulator is dependent upon the out2max = 10 - v gs v gs . v another criterion is its efficiency of heat removal. the power dissipated by the mosfet is given by: pd = i out2 x (v in ? v out2 ) where i out2 is the maximum load current, v out2 is the nominal output voltage. in some applications, heatsink might be required to help maintain the junction temperature of the mosfet below its maximum rating. linear regulator compensation selection the linear regulator is stable over all loads current. however, the transient response can be further enhanced by connecting a rc network between the fbl and drive pin. depending on the output capacitance and load current of the application, the value of this rc network is then varied. pwm compensation the output lc filter of a step down converter introduces a double pole, which contributes with -40db/decade gain slope and 180 degrees phase shift in the control the poles and zero of this transfer functions are: out1 lc c l 2 1 f p = out1 esr c esr 2 1 f p = the f lc is the double poles of the lc filter, and f esr is the zero introduced by the esr of the output capacitor. 1 c esr s c l s c esr s 1 gain out1 out1 2 out1 lc + + + = loop. a compensation network among comp, fb and v out1 should be added. the compensation network is shown in fig. 9. the output lc filter consists of the output inductor and output capacitors. the transfer function of the lc filter is given by: phase l output1 c out1 esr figure 6. the output lc filter f lc f esr -40db/dec -20db/dec frequency(hz) gain (db) figure 7. the lc filter gain and frequency
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 6 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) the pwm modulator is shown in figure 8. the input is the output of the error amplifier and the output is the phase node. the transfer function of the pwm modulator is given by: osc in1 pwm v v gain d = figure 8. the pwm modulator output of error amplifier g v osc pwm comparator driver driver phase v in osc the compensation network is shown in figure 9. it provides a close loop transfer function with the highest zero crossover frequency and sufficient phase margin. the transfer function of error amplifier is given by: ? ? ? ? + ? ? ? ? + = = sc3 1 r3 r1// sc2 1 r2 // sc1 1 v v gain out1 comp amp ( ) ? ? ? ? + ? ? ? ? + + ? ? ? ? ? + + ? ? ? ? + + = c3 r3 1 s c2 c1 r2 c2 c1 s s c3 r3 r1 1 s c2 r2 1 s c1 r3 r1 r3 r1 the poles and zeros of the transfer function are: c2 r2 2 1 f z1 p = ( ) c3 r3 r1 2 1 f z2 + p = ? ? ? ? + p = c2 c1 c2 c1 r2 2 1 f p1 c3 r3 2 1 f p2 p = v ref v out1 v comp r 1 r 3 c 3 r 2 c 2 c 1 fb figure 9. compensation network the closed loop gain of the converter can be written as: gain lc x gain pwm x gain amp figure 10. shows the asymptotic plot of the closed loop converter gain, and the following guidelines will help to design the compensation network. using the below guidelines should give a compensation similar to the curve plotted. a stable closed loop has a -20db/ decade slope and a phase margin greater than 45 degree. 1.choose a value for r1, usually between 1k and 5k. 2.select the desired zero crossover frequency f o : pwm compensation (cont.) 3.place the first zero f z1 before the output lc filter double pole frequency f lc . f z1 = 0.75 x f lc calculate the c2 by the equation: r1 f f v v r2 lc o in osc d = (1/5 ~ 1/10) x f s >f o >f esr use the following equation to calculate r2: 0.75 f r2 2 1 c2 lc p = 4.set the pole at the esr zero frequency f esr : f p1 = f esr calculate the c1 by the equation: 1 f c2 r2 2 c2 c1 esr - p =
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 7 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) pwm compensation (cont.) 5.set the second pole f p2 at the half of the switching frequency and also set the second zero f z2 at the output lc filter double pole f lc . the compensation gain should not exceed the error amplifier open loop gain, check the compensation gain at f p2 with the capabilities of the error amplifier. f p2 = 0.5 x f s f z2 = f lc 1 f 2 f r1 r3 lc s - = s f r3 1 c3 p = combine the two equations will get the following component calculations: f lc frequency(hz) g a i n ( d b ) 20log (r2/r1) 20log (v in / g v osc ) f z1 f z2 f p1 f p2 f esr pwm & filter gain converter gain compensation gain figure 10. converter gain and frequency output inductor selection the inductor value determines the inductor ripple current and affects the load transient response. higher inductor value reduces the inductor?s ripple current and induces lower output ripple voltage. the ripple current in1 out1 s out1 in1 ripple v v l f v v i - = esr i v ripple out1 = d where fs is the switching frequency of the regulator. although increase of the inductor value and frequency reduces the ripple current and voltage, a tradeoff will exist between the inductor?s ripple current and the regulator load transient response time. a smaller inductor will give the regulator a faster load transient response at the expense of higher ripple current. increasing the switching frequency (f s ) also reduces the ripple current and voltage, but it will increase the switching loss of the mosfet and the power dissipation of the converter. the maximum ripple current occurs at the maximum input voltage. a good starting point is to choose the ripple current to be and ripple voltage can be approximated by: approximately 30% of the maximum output current. once the inductance value has been chosen, select an inductor that is capable of carrying the required peak current without going into saturation. in some types of inductors, especially core that is made of ferrite, the ripple current will increase abruptly when it saturates. this will result in a larger output ripple voltage. output capacitor selection higher capacitor value and lower esr reduce the output ripple and the load transient drop. therefore, selecting high performance low esr capacitors is intended for switching regulator applications. in some applications, multiple capacitors have to be parallel to achieve the desired esr value. a small decoupling capacitor in parallel for bypassing the noise is also recommended, and the voltage rating of the output capacitors also must be considered. if tantalum capacitors are used, make sure they are surge tested
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 8 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) applications, multiple capacitors have to be parallel to achieve the desired esr value. a small decoupling capacitor in parallel for bypassing the noise is also recommended, and the voltage rating of the output capacitors also must be considered. if tantalum capacitors are used, make sure they are surge tested by the manufactures. if in doubt, consult the capacitors manufacturer. input capacitor selection the input capacitor is chosen based on the voltage rating and the rms current rating. for reliable operation, select the capacitor voltage rating to be at least 1.3 times higher than the maximum input voltage. the maximum rms current rating requirement is approximately i out1 /2, where i out1 is the load current. during power up, the input capacitors have to handle large amount of surge current. if tantalum capacitors are used, make sure they are surge tested by the manufactures. if in doubt, consult the capacitors manufacturer. for high frequency decoupling, a ceramic mosfet selection the selection of the n-channel power mosfets are determined by the r ds(on) , reverse transfer capacitance (c rss ) and maximum output current requirement. there are two components of loss in the mosfets: conduction loss and transition loss. for the upper and lower mosfet, the losses are approximately given by the following: p upper = i out1 (1+ tc)(r ds(on) )d + (0.5)( i out1 )(v in1 )( t sw )f s p lower = i out1 (1+ tc)(r ds(on) )(1-d) where i out1 is the load current tc is the temperature dependency of r ds(on) f s is the switching frequency t sw is the switching interval d is the duty cycle note that both mosfets have conduction loss while the upper mosfet include an additional transition loss. the switching internal, t sw , is a function of the reverse transfer capacitance c rss . the (1+tc) term is to factor in the temperature dependency of the r ds(on) and can be extracted from the ?r ds(on) vs tempera ture? curve of the power mosfet. layout considerations in any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator. with power devices switching at 300khz or above, the resulting current transient will cause volt- age spike across the interconnecting impedance and parasitic circuit elements. as an example, consider the turn-off transition of the pwm mosfet. before turn-off, the mosfet is carrying the full load current. during turn-off, current stops flowing in the mosfet and is free-wheeling by the lower mosfet and para- sitic diode. any parasitic inductance of the circuit gen- by the manufactures. if in doubt, consult the capacitors manufacturer. input capacitor selection the input capacitor is chosen based on the voltage rating and the rms current rating. for reliable operation, select the capacitor voltage rating to be at least 1.3 times higher than the maximum input voltage. the maximum rms current rating requirement is approximately i out1 /2, where i out1 is the load current. during power up, the input capacitors have to handle large amount of surge current. if tantalum capacitors are used, make sure they are surge tested by the manufactures. if in doubt, consult the capacitors manufacturer. for high frequency decoupling, a ceramic capacitor 1uf can be connected between the drain of upper mosfet and the source of lower mosfet. output capacitor selection (cont.) capacitor 1uf can be connected between the drain of upper mosfet and the source of lower mosfet.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 9 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) phase) away from sensitive small signal nodes since these nodes are fast moving signals. therefore, keep traces to these nodes as short as possible. - the traces from the gate drivers to the mosfets (ug, lg, drive) should be short and wide. - place the source of the high-side mosfet and the drain of the low-side mosfet as close as possible. minimizing the impedance with wide layout plane between the two pads reduces the voltage bounce of the node. - decoupling capacitor, compensation component, the resistor dividers, boot capacitors, and ref_out ca pacitors should be close their pins. (for example, place the decoupling ceramic capacitor near the drain of the high-side mosfet as close as possible. the bulk capacitors are also placed near the drain). - the input capacitor should be near the drain of traces should minimize interconnecting imped- ances and the magnitude of voltage spike. and signal and power grounds are to be kept separate till com- bined using ground plane construction or single point grounding. figure 11. illustrates the layout, with bold lines indicating high current paths; these traces must be short and wide. components along the bold lines should be placed lose together. below is a checklist for your layout: - the metal plate of the bottom of the packages (qfn-16) must be soldered to the pcb and con- nected to the gnd plane on the backside through several thermal vias. - keep the switching nodes (ugate, lgate and layout considerations (cont.) figure 11. layout guidelines vcc12 boot phase ugate lgate v in1 v out1 l o a d apw7068 drive fbl l o a d v out2 v in2 ref_out be close to the output capacitor gnd and the lower mosfet gnd. - the drain of the mosfets (v in1 and phase nodes) should be a large plane for heat sinking. erates a large voltage spike during the switching interval. in general, using short, wide printed circuit the upper mosfet; the output capacitor should be near the loads. the input capacitor gnd should
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 0 p a c k a g e i n f o r m a t i o n s o p ? 1 4 ( 1 5 0 m i l ) millimeters inches dim min. max. min. max. a 1.477 1.732 0.058 0.068 a1 0.102 0.255 0.004 0.010 b 0.331 0.509 0.013 0.020 c 0.191 0.2496 0.0075 0.0098 d 8.558 8.762 0.336 0.344 e 3.82 3.999 0.150 0.157 e 1.274 0.050 h 5.808 6.215 0.228 0.244 l 0 .382 1.274 0.015 0.050 q 0 8 0 8 d e b a 0 . 0 1 0 l 0 . 0 1 5 x 4 5 h e c gauge plane seating plane a 1
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 1 p a c k a g e i n f o r m a t i o n millimeters inches dim min. max. min. max. a 1.35 1.75 0.053 0.069 a1 0.10 0.25 0.004 0.010 b 0.20 0.30 0.008 0.012 d 4.80 5.00 0.189 0.197 e 5.79 6.20 0.228 0.244 e 1 3.81 3.99 0.150 0.157 e 0.6 3 5 typ. 0.025 typ. l 0.4 1 1.27 0.016 0.050 f 1 0 8 0 8 q s o p - 1 6 1 2 3 e1 e d l gauge plane 1 e b a1 a
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 2 p a c k a g i n g i n f o r m a t i o n millimeters inches dim min. max. min. max. a 0.76 0 .84 0.030 0.033 a1 0.00 0.0 4 0.00 0.0015 a2 0.57 0.63 0.022 0.025 a3 0.20 ref. 0.008 ref. d 3. 9 0 4 .10 0.154 0.161 e 3.90 4.10 0.154 0.161 b 0.25 0.35 0.010 0.014 d2 2.05 2.15 0.081 0.085 e2 2.05 2.15 0.081 0.085 e 0.650 bsc 0.0257bsc l 0.50 0.60 0.002 0.024 q f n - 1 6 e d a1 a3 a a2 d2 l e2 e b
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 3 p h y s i c a l s p e c i f i c a t i o n s t 25 c to peak tp ramp-up t l ramp-down ts preheat tsmax tsmin t l t p 25 temperature time critical zone t l to t p terminal material solder - plated copper (solder material : 90/10 or 63/37 snpb) , 100%sn lead solderability meets eia specification rsi86 - 91, ansi/j - std - 002 category 3. r e f l o w c o n d i t i o n ( i r / c o n v e c t i o n o r v p r r e f l o w ) c l a s s i f i c a t i o n r e f l o w p r o f i l e s profile feature sn - pb eutectic assembly pb - free assembly average ramp - up rate (t l to t p ) 3 c/second max. 3 c/second max. preheat - temperature min (tsmin) - temperature max (tsmax) - time (min to max) (ts) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 180 seconds time maintained above: - temperature (t l ) - time (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak /classificatioon temperature (tp) see table 1 see table 2 time within 5 c of actual peak temperature (tp) 10 - 30 seconds 20 - 40 seconds ramp - down rate 6 c/se cond max. 6 c/second max. time 25 c to peak temperature 6 minutes max. 8 minutes max. notes: all temperatures refer to topside of the package. measured on the body surface.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 4 c a r r i e r t a p e & r e e l d i m e n s i o n s t ao e w po p ko bo d1 d f p1 test item method description solderability mil - std - 883d - 2003 245 c, 5 sec holt mil - std - 883d - 1005.7 1000 hrs bias @125 c pct jesd - 22 - b,a102 168 hrs, 100 % rh, 121 c tst mil - std - 883d - 1011.9 - 65 c~150 c, 200 cycles esd mil - std - 883d - 3015.7 vhbm > 2kv, vmm > 200v latch - up jesd 78 10ms, 1 tr > 100ma r e l i a b i l i t y t e s t p r o g r a m table 1. snpb entectic process ? package peak reflow temperature s package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 240 +0/ - 5 c 225 +0/ - 5 c 3 2.5 mm 225 +0/ - 5 c 225 +0/ - 5 c table 2. pb - free process ? package classification reflow temperatures package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 +0 c* 260 +0 c* 260 +0 c* 1.6 mm ? 2.5 mm 260 +0 c* 250 +0 c* 245 +0 c* 3 2.5 mm 250 +0 c* 245 +0 c* 245 +0 c* *tolerance: the device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means peak reflow temperature +0 c. for example 260 c+0 c) at the rated msl level. c l a s s i f i c a t i o n r e f l o w p r o f i l e s ( c o n t . )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 5 c a r r i e r t a p e & r e e l d i m e n s i o n s ( c o n t . ) a j b t2 t1 c 4 x 4 s h i p p i n g t r a y application a b c j t1 t2 w p e 330ref 100ref 13.0 + 0.5 - 0.2 2 0.5 16.5ref 2.5 025 16.0 0.3 8 1.75 f d d1 po p1 ao ko t sop - 14 (150mil) 7.5 f 0.50 + 0.1 f 1.50 (min) 4.0 2.0 6.5 2.10 0.3 0.05 application a b c j t1 t2 w p e 330 1 62 +1.5 12.75+ 0.15 2 0.5 12.4 0.2 2 0.2 12 0. 3 8 0.1 1.75 0.1 f d d1 po p1 ao bo ko t q sop - 16 5.5 1 1.55 +0.1 1.55+ 0.25 4.0 0.1 2.0 0.1 6.4 0.1 5.2 0. 1 2.1 0.1 0.3 0.013 (mm)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - j u n . , 2 0 0 6 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 6 c u s t o m e r s e r v i c e c o v e r t a p e d i m e n s i o n s 4 x 4 s h i p p i n g t r a y ( c o n t . ) a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan, r.o.c. tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 7 f , n o . 1 3 7 , l a n e 2 3 5 , p a c c h i a o r d . , h s i n t i e n c i t y , t a i p e i h s i e n , t a i w a n , r . o . c . t e l : 8 8 6 - 2 - 8 9 1 9 1 3 6 8 f a x : 8 8 6 - 2 - 8 9 1 9 1 3 6 9 application carrier width cover tape width devices per reel sop - 14 24 21.3 2500 qsop - 16 12 9.3 2500


▲Up To Search▲   

 
Price & Availability of APW7068ME-TYL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X