![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
parameter max. units v ces collector-to-emitter breakdown voltage 600 v i c @ t c = 25c continuous collector current 23 i c @ t c = 100c continuous collector current 12 a i cm pulsed collector current 92 i lm clamped inductive load current 92 v ge gate-to-emitter voltage 20 v e arv reverse voltage avalanche energy 180 mj p d @ t c = 25c maximum power dissipation 100 p d @ t c = 100c maximum power dissipation 42 t j operating junction and -55 to + 150 t stg storage temperature range soldering temperature, for 10 seconds 300 (0.063 in. (1.6mm from case ) c mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1n?m) IRG4BC30WPBF insulated gate bipolar transistor pd - 95173 e c g n-channel features ? designed expressly for switch-mode power supply and pfc (power factor correction) applications ? industry-benchmark switching losses improve efficiency of all power supply topologies ? 50% reduction of eoff parameter ? low igbt conduction losses ? latest-generation igbt design and construction offers tighter parameters distribution, exceptional reliability ? lower switching losses allow more cost-effective operation than power mosfets up to 150 khz ("hard switched" mode) ? of particular benefit to single-ended converters and boost pfc topologies 150w and higher ? low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 khz) benefits v ces = 600v v ce(on) max. = 2.70v @v ge = 15v, i c = 12a 04/23/04 parameter typ. max. units r jc junction-to-case ??? 1.2 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient, typical socket mount ??? 80 wt weight 1.44 ??? g thermal resistance absolute maximum ratings w t o -22 0 ab www.irf.com 1 ? lead-free
IRG4BC30WPBF 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ? 51 76 i c = 12a q ge gate - emitter charge (turn-on) ? 7.6 11 nc v cc = 400v see fig.8 q gc gate - collector charge (turn-on) ? 18 27 v ge = 15v t d(on) turn-on delay time ? 25 ? t r rise time ? 16 ? t j = 25c t d(off) turn-off delay time ? 99 150 i c = 12a, v cc = 480v t f fall time ? 67 100 v ge = 15v, r g = 23 ? e on turn-on switching loss ? 0.13 ? energy losses include "tail" e off turn-off switching loss ? 0.13 ? mj see fig. 9, 10, 13, 14 e ts total switching loss ? 0.26 0.35 t d(on) turn-on delay time ? 24 ? t j = 150c, t r rise time ? 17 ? i c = 12a, v cc = 480v t d(off) turn-off delay time ? 150 ? v ge = 15v, r g = 23 ? t f fall time ? 150 ? energy losses include "tail" e ts total switching loss ? 0.55 ? mj see fig. 11,13, 14 l e internal emitter inductance ? 7.5 ? nh measured 5mm from package c ies input capacitance ? 980 ? v ge = 0v c oes output capacitance ? 71 ? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ? 18 ? ? = 1.0mhz parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 ? ? v v ge = 0v, i c = 250a v (br)ecs emitter-to-collector breakdown voltage 18 ? ? v v ge = 0v, i c = 1.0a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ? 0.34 ? v/c v ge = 0v, i c = 1.0ma ? 2.1 2.7 i c = 12a v ge = 15v v ce(on) collector-to-emitter saturation voltage ? 2.45 ? i c = 23a see fig.2, 5 ? 1.95 ? i c = 12a , t j = 150c v ge(th) gate threshold voltage 3.0 ? 6.0 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ? -11 ? mv/c v ce = v ge , i c = 250a g fe forward transconductance 11 16 ? s v ce = 100 v, i c = 12a ? ? 250 v ge = 0v, v ce = 600v ? ? 2.0 v ge = 0v, v ce = 10v, t j = 25c ? ? 1000 v ge = 0v, v ce = 600v, t j = 150c i ges gate-to-emitter leakage current ? ? 100 n a v ge = 20v electrical characteristics @ t j = 25c (unless otherwise specified) i ces zero gate voltage collector current v a switching characteristics @ t j = 25c (unless otherwise specified) ns ns pulse width 80s; duty factor 0.1%. pulse width 5.0s, single shot. notes: repetitive rating; v ge = 20v, pulse width limited by max. junction temperature. ( see fig. 13b ) v cc = 80%(v ces ), v ge = 20v, l = 10h, r g = 23 ? , (see fig. 13a) repetitive rating; pulse width limited by maximum junction temperature. IRG4BC30WPBF www.irf.com 3 fig. 1 - typical load current vs. frequency (for square wave, i=i rms of fundamental; for triangular wave, i=i pk ) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics load current ( a ) 0 10 20 30 40 0.1 1 10 100 f, fre q uenc y ( khz ) a 60% of rated voltage ideal diodes square wave: for both: duty cycle: 50% t = 125c t = 90c gate drive as specified sink j triangular wave: clamp voltage: 80% of rated power dissipation = 21w 1 10 100 1 10 v , collector-to-emitter voltage (v) i , collector-to-emitter current (a) ce c v = 15v 20 s pulse width ge t = 25 c j t = 150 c j 0.1 1 10 100 5.0 6.0 7.0 8.0 9.0 10.0 11.0 v , gate-to-emitter volta g e (v) i , collector-to-emitter current (a) ge c v = 50v 5 s pulse width cc t = 25 c j t = 150 c j IRG4BC30WPBF 4 www.irf.com 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 0 5 10 15 20 25 25 50 75 100 125 150 maximum dc collector current (a t , case temperature (c) c v = 1 5 v ge a -60 -40 -20 0 20 40 60 80 100 120 140 160 1.5 2.0 2.5 3.0 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce v = 15v 80 us pulse width ge i = a 24 c i = a 12 c i = a 6 c IRG4BC30WPBF www.irf.com 5 0 10 20 30 40 50 0.0 0.1 0.2 0.3 0.4 0.5 r , gate resistance (ohm) total switching losses (mj) g v = 480v v = 15v t = 25 c i = 12a cc ge j c -60 -40 -20 0 20 40 60 80 100 120 140 160 0.01 0.1 1 10 t , junction temperature ( c ) total switching losses (mj) j r = ohm v = 15v v = 480v g ge cc i = a 24 c i = a 12 c i = a 6 c fig. 10 - typical switching losses vs. junction temperature fig. 9 - typical switching losses vs. gate resistance fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 7 - typical capacitance vs. collector-to-emitter voltage 1 10 100 0 500 1000 1500 2000 v , collector-to-emitter volta g e (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies g e g c , ce res g c oes ce g c c ies c oes c res 23 ? r g , gate resistance ( ? ) 0 10 20 30 40 50 60 0 4 8 12 16 20 q , total gate char g e (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 12a cc c IRG4BC30WPBF 6 www.irf.com fig. 12 - turn-off soa fig. 11 - typical switching losses vs. collector-to-emitter current 0.1 1 10 100 1000 1 10 100 1000 c ce ge v , collector-to-em itter voltage (v) i , c ollector-to-em itter c urrent (a) safe operating area v = 20v t = 125c ge j 0 5 10 15 20 25 30 0.0 0.5 1.0 1.5 i , collector-to-emitter current (a) total switching losses (mj) c r = ohm t = 150 c v = 480v v = 15v g j cc ge 23 ? IRG4BC30WPBF www.irf.com 7 480v 4 x i c @ 25c d.u.t. 50v l v * c * driver same t y p e as d.u.t.; vc = 80% of vce ( max ) * note: due to the 50v p ow er su p p l y , p ulse width and inductor will increase to obtain rated id. 1000v fig. 13a - clamped inductive load test circuit fig. 13b - pulsed collector current test circuit 480f 960v 0 - 480v r l = t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% v c i c e on e off ts on off e = (e +e ) fig. 14b - switching loss waveforms 50v driver* 1000v d.u.t. i c c v l fig. 14a - switching loss test circuit * driver same type as d.u.t., vc = 480v IRG4BC30WPBF 8 www.irf.com data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/04 lead assignments 1 - g a te 2 - d r a in 3 - s o u r c e 4 - d r a in - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.3 6 (.0 14 ) m b a m 4 1 2 3 notes: 1 d ime n s io n in g & to le r a n c in g p e r a n s i y 14.5m, 19 82. 3 o u tlin e c o n f o r m s t o je d e c o u t lin e t o -2 20a b . 2 c o n tr o llin g d im e n s io n : in c h 4 h e a t s in k & le a d m e a s u r e me n ts d o n ot include burrs. hexfet 1- gate 2- drain 3- source 4- drain lead assignments igbts, copack 1- gate 2- collector 3- emitter 4- collector to-220ab package outline dimensions are shown in millimeters (inches) to-220ab part marking information example: in the ass embly line "c" t h is is an ir f 1010 lot code 1789 as s e mb le d on ww 19, 1997 part number assembly lot code date code year 7 = 1997 line c wee k 19 logo r e ct if ie r in t e r n at ion al note: "p" in assembly line position indicates "lead-free" |
Price & Availability of IRG4BC30WPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |