Part Number Hot Search : 
SSM2017S 4744A 34920 DMC20 C114Y 0L100 ACP7019 PMSTA05
Product Description
Full Text Search
 

To Download MVTX2802A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 zarlink semiconductor inc. zarlink, zl and the zarlink semiconductor logo are trademarks of zarlink semiconductor inc. copyright 2003, zarlink semiconductor inc. all rights reserved. features ? 4 gigabit ports with gmii and pcs interface - gigabit port can also support 100/10 mbps mii interface - provide hot plug support for gmii/pcs module ? high performance layer 2 packet forwarding (11.904m packets per second) and filtering at full-wire speed ? maximum throughput is 4 gbps non-blocking ? centralized shared-memory architecture ? consists of two memory domains at 133 mhz - frame buffer domain: one bank of zbt-sram with 1m/2mb total - switch database domain with 256k/512k sram ? up to 64k mac addresses to provide large node aggregation in wiring closet switches ? provides port based and id tagged vlan (ieee802.1q) up to 4k vlan ? support ip multicast with igmp snooping up to 64k groups. traffic classification ? classify traffic into 8 transmission priorities per port ? supports delay bounded, strict priority, and wfq ? provides 2 level dropping precedence with wred mechanism - user controlled thresholds for wred ? classification based on layer 2, 3 markings - vlan priority field in vlan tagged frame - ds/tos field in ip packet ? the precedence of above two classifications can be programmable october 2003 ordering information MVTX2802Ag 596 pin hsbga -40 c to +85 c mvtx2802 managed 4-port 1000 mbps ethernet switch data sheet figure 1 - MVTX2802Ag functional block diagram frame data buffer a zbt-sram (1m/2mb) sram 256/512k sw database mac table frame engine scheduler fdb interface sdb interface search engine 64bit 32bit nm database gmii /pcs port 0 gmii /pcs port 1 gmii /pcs port 2 gmii /pcs port 3 16/8bit- bus/ serial management module cpu mvtx2802 led
mvtx2802 data sheet 2 zarlink semiconductor inc. qos support ? supports ieee 802.1p/q quality of service with 8 priority ? buffer management: reserve buffers on per class and per port basis ? port-based priority: vlan priority with tagged fr ame can be overwritten by the priority of pvid ? qos features can be configured on a per port basis ? packet filtering and port security ? static addressing filtering for source and/or destination mac address ? static learned mac addresses will not be aged out ? secure mode per port: prevent learning for port in a secure mode ? support per mac per port filtering ? full duplex ethernet ieee 802.3x flow control ? provides ethernet multicast and broadcast control ? 4 port trunking groups, 4 ports per group (trunkin g can be based on source mac and/or destination mac and source port) ? led signals provided by a se rial or parallel interface ? cpu interface supports 16/8-bit cpu bus in m anaged mode and a synchronous serial interface and i 2 c interface in unmanaged mode. ? snmp/rmon support with cpu ? built-in mib counter ? spanning tree with cpu ? multiple spanning trees (per spanning tree per vlan) ? hardware auto-negotiation through serial management in terface (mdio) for gigabit ethernet ports, supports 10/100/1000 mbps ? bist for internal and external sram-zbt ?i 2 c eeprom or synchronous serial port for configuration ? packaged in 596-pin bga
mvtx2802 data sheet 3 zarlink semiconductor inc. description the mvtx2800 family is a group of 1000 mbps non-blocki ng ethernet switch chips with on-chip address memory. a single chip provides a maximum of eight 1000 mbps ports and a dedicated cpu interf ace with a 16/8-bit bus for managed and unmanaged switch applications. the mvtx28 00 family consists of the following four products: ? mvtx2804 8 gigabit ports managed ? mvtx2803 8 gigabit ports unmanaged ? mvtx2802 4 gigabit ports managed ? mvtx2801 4 gigabit ports unmanaged the MVTX2802Ag supports up to 64k mac addresses to aggr egate traffic from multiple wiring closet stacks. the centralized shared-memory architecture allows a very hi gh performance packet-forward ing rate of 5.952m packets per second at full wire speed. the chip is optimized to provide a low-cost, high performance workgroup, and wiring closet, layer 2 switching solution with 4 gigabit ethernet ports. one frame buffer memory domain s utilize cost effective, high?per formance zbt-sram with aggregated bandwidth of 8.5gbps to support full wire sp eed on all external ports simultaneously. with strict priority, delay bounded, and wrr transmis sion scheduling, plus wred memory congestion scheme, the chip provides powerful qos functions for convergent network multimedia and mission-critical applications. the chip provides 8 transmission priorities and 2 level drop pr ecedence. traffic is assigned its transmission priority and dropping precedence based on the frame vlan tag priority or ds/tos fields in ip packets. ip multicast snooping prov ides up to 64k simult aneous ip multicast groups. with 4k ieee 802.1q vlans, the MVTX2802Ag provides th e ability to logically group users to control multicast traffic. the MVTX2802Ag supp orts port trunking/load sharin g on the 1000 mbps ports with fail-over capability. the port trunking/load sharing can be used to group ports between interlinked switches to increase the effective network bandwidth. in full-duplex mode, ieee 802.3x flow control is provided. the physical codi ng sublayer (pcs) is integrated on- chip to provide a direct 10-bit gmii interface, or the pcs can be bypassed to provide an interface to existing fiber- based gigabit ethernet transceivers. statistical information for etherstat snmp and remote m onitoring management information base (rmon mib) are collected independently for each of the four ports. access to these statistical counter/registers is provided via the cpu interface. snmp management frames can be receiv ed and transmitted via the cpu interface, creating a complete network management solution. the MVTX2802Ag is fabricated using 0.25 m technology. inputs, however, are 3.3v tolerant and the outputs are capable of directly interfacing to lvttl levels. the MVTX2802Ag is packaged in a 596-pin ball grid array package.
mvtx2802 data sheet table of contents 4 zarlink semiconductor inc. 1.0 block functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.1 frame data buffer (fdb) interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2 switch database (sdb) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 gmii/pcs mac module (gmac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 cpu interface module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 management module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6 frame engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7 search engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8 led interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.9 internal memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.0 system configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 management and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 managed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 register configuration, frame transmission, and frame rece ption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 ethernet frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 unmanaged mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 i2c interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.1 start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.2 address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.3 data direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.4 acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.5 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.6 stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 synchronous serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.1 write command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.2 read command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.0 data forwarding protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 unicast data frame forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 multicast data frame forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 frame forwarding to and from cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.0 memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 detailed memory information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.0 search engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 search engine overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 basic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3 search, learning, and aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.1 mac search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.2 learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.3 aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.4 data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.5 vlan port association table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.0 frame engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1 data forwarding summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2 frame engine details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.2.1 fcb manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.2.2 rx interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.2.3 rxdma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.2.4 txq manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3 port control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.4 txdma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
mvtx2802 data sheet 5 zarlink semiconductor inc. 7.0 quality of service and flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 four qos configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.3 delay bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.4 strict priority and best effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.5 weighted fair queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.6 shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.7 wred drop threshold management support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.8 buffer management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.8.1 dropping when buffers are scarce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.9 flow control basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.9.1 unicast flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.9.2 multicast flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.10 mapping to ietf diffserv classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.0 port trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.1 features and restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.2 unicast packet forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.3 multicast packet forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.4 preventing multicast packets from looping back to the source trunk. . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.0 led interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.2 serial mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.3 parallel mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.4 led control registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10.0 hardware statistics counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 10.1 hardware statistics counters list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 10.2 ieee 802.3 hub management (r fc 1213) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10.2.1 event counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10.2.1.1 readableoctet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10.2.1.2 readableframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.2.1.3 fcserrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.2.1.4 alignmenterrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.2.1.5 frametoolongs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.2.1.6 shortevents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.2.1.7 runts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.2.1.8 collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.2.1.9 lateevents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.2.1.10 verylongevents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.2.1.11 dataratemisatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.2.1.12 autopartitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.2.1.13 totalerrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.3 ieee ? 802.1 bridge managemen t (rfc 1286) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.3.1 event counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.3.1.1 inframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.3.1.2 outframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.3.1.3 indiscards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.3.1.4 delayexceededdiscards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.3.1.5 mtuexceededdiscards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.4 rmon ? ethernet statistic group (rfc 1757) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.4.1 event counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.4.1.1 drop events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.4.1.2 octets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.4.1.3 broadcastpkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.4.1.4 multicastpkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
mvtx2802 data sheet 6 zarlink semiconductor inc. 10.4.1.5 crcalignerrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.4.1.6 undersizepkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.4.1.7 oversizepkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.4.1.8 fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.4.1.9 jabbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.4.1.10 collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.4.1.11 packet count for different size groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 11.0 register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 11.1 MVTX2802Ag register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 11.2 directly accessed registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 11.2.1 index_reg0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 11.2.2 index_reg1 (only needed for cpu 8-bit bus mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 11.2.3 data_frame_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 11.2.4 control_frame_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 11.2.5 command&status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 11.2.6 interrupt register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 11.2.7 control frame buffer1 ac cess register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 11.3 group 0 address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 11.3.1 mac ports group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 11.3.1.1 ecr1pn: port n control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 11.3.1.2 ecr2pn: port n control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 11.3.1.3 ecrmisc1 ? cpu port control re gister misc1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.3.1.4 ecrmisc2 ? cpu port control re gister misc2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.3.1.5 ggcontrol 0? extra giga port c ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 11.3.1.6 ggcontrol 1? extra giga port c ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 11.4 group 1 address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11.4.1 vlan group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11.4.1.1 avtcl ? vlan type code register low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11.4.1.2 avtch ? vlan type code register high. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11.4.1.3 pvmap00_0 ? port 00 configuration register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11.4.1.4 pvmap00_1 ? port 00 configuration register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 11.4.1.5 pvmap00_3 ? port 00 configuration register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 11.5 port vlan map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.5.1 pvmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.6 group 2 address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.6.1 port trunking group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.6.1.1 trunk0 ? trunk group 0 member (managed mode on ly) . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.6.1.2 trunk1 ? trunk group 1 member (managed mode on ly) . . . . . . . . . . . . . . . . . . . . . . . . . 59 11.6.1.3 trunk2? trunk group 2 member (managed mode only ). . . . . . . . . . . . . . . . . . . . . . . . . . 59 11.6.1.4 trunk3? trunk group 3 member (managed mode only ). . . . . . . . . . . . . . . . . . . . . . . . . . 59 11.6.1.5 trunk_hash_mode ? trunk hash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 11.6.1.6 trunk0_mode ? trunk group 0 mode (unmanaged mode) . . . . . . . . . . . . . . . . . . . . . . . 59 11.6.1.7 trunk0_hash0 ? trunk group 0 hash result 0,1,2 destination port number . . . . . . . . . . 60 11.6.1.8 trunk0_hash1 ? trunk group 0 hash result 2,3,4,5 destination port number . . . . . . . . . 60 11.6.1.9 trunk0_hash2 ? trunk group 0 hash result 5,6,7 destination port number . . . . . . . . . . 60 11.6.1.10 trunk0_hash3 ? tr unk group 0 hash result 8,9,10 destination port number . . . . . . . . 60 11.6.1.11 trunk0_hash4 ? tr unk group 0 hash result 10,11,12, 13 destination port number . . . . 61 11.6.1.12 trunk0_hash5 ? tr unk group 0 hash result 13,14,15 destination port number . . . . . . 61 11.6.1.13 trunk1_hash0 ? trunk group 1 hash result 0, 1, 2 destinat ion port number . . . . . . . . 61 11.6.1.14 trunk1_hash1 ? tr unk group 1 hash result 2, 3, 4, 5 destination port number . . . . . . 61 11.6.1.15 trunk1_hash2 ? trunk group 1 hash result 5, 6, 7 destinat ion port number . . . . . . . . 62 11.6.1.16 trunk1_hash3 ? trunk group 1 hash result 8, 9, 10 destinat ion port number . . . . . . . 62 11.6.1.17 trunk1_hash4? trunk group 1 hash result 11, 12, 13 destin ation port number . . . . . . 62 11.6.1.18 trunk1_hash5 ? tr unk group 1 hash result 13, 14, 15 destination port number . . . . . 62
mvtx2802 data sheet 7 zarlink semiconductor inc. 11.6.1.19 trunk2_hash0 ? trunk group 2 hash result 0, 1, 2 destinat ion port number . . . . . . . . 62 11.6.1.20 trunk2_hash1 ? tr unk group 2 hash result 2, 3, 4, 5 destination port number . . . . . . 63 11.6.1.21 trunk2_hash2 ? trunk group 2 hash result 5, 6, 7 destinat ion port number . . . . . . . . 63 11.6.1.22 trunk2_hash3 ? trunk group 2 hash result 8, 9, 10 destinat ion port number . . . . . . . 63 11.6.1.23 trunk2_hash4 ? tr unk group 2 hash result 10, 11, 12, 13 destination port number . . 63 11.6.1.24 trunk2_hash5 ? tr unk group 2 hash result 13, 14, 15 destination port number . . . . . 64 11.6.1.25 trunk3_hash0 ? trunk group 3 hash result 0, 1, 2 destinat ion port number . . . . . . . . 64 11.6.1.26 trunk3_hash1 ? tr unk group 3 hash result 2, 3, 4, 5 destination port number . . . . . . 64 11.6.1.27 trunk3_hash2 ? trunk group 3 hash result 5, 6, 7 destinat ion port number . . . . . . . . 64 11.6.1.28 trunk3_hash3 ? trunk group 3 hash result 8, 9, 10 destinat ion port number . . . . . . . 64 11.6.1.29 trunk3_hash4 ? tr unk group 3 hash result 10, 11, 12, 13 destination port number . . 65 11.6.1.30 trunk3_hash5 ? tr unk group 3 hash result 13, 14, 15 destination port number . . . . . 65 11.6.2 multicast hash registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11.6.2.1 multicast_hash00 ? multicast hash result0 mask byte [7:0 ] . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.2.2 multicast_hash01 ? multicast hash result1 mask byte [7:0 ] . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.2.3 multicast_hash02 ? multicast hash result2 mask byte [7:0 ] . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.2.4 multicast_hash03 ? multicast hash result3 mask byte [7:0 ] . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.2.5 multicast_hash04 ? multicast hash result4 mask byte [7:0 ] . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.2.6 multicast_hash05 ? multicast hash result5 mask byte [7:0 ] . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.2.7 multicast_hash06 ? multicast hash result6 mask byte [7:0 ] . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.2.8 multicast_hash07 ? multicast hash result7 mask byte [7:0 ] . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.2.9 multicast_hash08 ? multicast hash result8 mask byte [7:0 ] . . . . . . . . . . . . . . . . . . . . . . . . 67 11.6.2.10 multicast_hash09 ? multicast hash result9 mask byte [7:0] . . . . . . . . . . . . . . . . . . . . . . . 67 11.6.2.11 multicast_hash10 ? multicast hash result10 mask byte [7:0] . . . . . . . . . . . . . . . . . . . . . . 67 11.6.2.12 multicast_hash11 ? multicast hash result11 mask byte [7:0] . . . . . . . . . . . . . . . . . . . . . . 67 11.6.2.13 multicast_hash12 ? multicast hash result12 mask byte [7:0] . . . . . . . . . . . . . . . . . . . . . . 67 11.6.2.14 multicast_hash13 ? multicast hash result13 mask byte [7:0] . . . . . . . . . . . . . . . . . . . . . . 67 11.6.2.15 multicast_hash14 ? multicast hash result14 mask byte [7:0] . . . . . . . . . . . . . . . . . . . . . . 67 11.6.2.16 multicast_hash15 ? multicast hash result15 mask byte [7:0] . . . . . . . . . . . . . . . . . . . . . . 67 11.6.2.17 multicast_hashml ? multicast hash bit[8] for result7-0 . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.6.2.18 multicast_hashml ? multicast ha sh bit[8] for result 15-8 . . . . . . . . . . . . . . . . . . . . . . . . 68 11.7 group 3 address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.7.1 cpu port configuration group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.7.1.1 mac0 ? cpu mac address byte 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 11.7.1.2 mac1 ? cpu mac address byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 11.7.1.3 mac2 ? cpu mac address byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 11.7.1.4 mac3 ? cpu mac address byte 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 11.7.1.5 mac4 ? cpu mac address byte 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 11.7.1.6 mac5 ? cpu mac address byte 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 9 11.7.1.7 int_mask1 ? interrupt mask 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 11.7.1.8 int_status0 ? masked interrupt status register0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.7.1.9 int_status1 ? masked interrupt status register1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.7.1.10 intp_mask0 ? interrup t mask for mac port 0,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.7.1.11 intp_mask1 ? interrup t mask for mac port 2,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 11.7.2 rqs ? receive queue select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 11.7.3 rqss ? receive queue status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.7.4 tx_age ? tx queue aging timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.8 group 4 address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.8.1 search engine group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.8.1.1 agetime_low ? mac a ddress aging time low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.8.1.2 agetime_high ?mac address aging time high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.8.1.3 v_agetime ? vlan to port aging time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11.8.1.4 se_opmode ? search engine operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11.8.1.5 scan ? scan control register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
mvtx2802 data sheet 8 zarlink semiconductor inc. 11.9 group 5 address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.9.1 buffer cont rol/qos group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.9.1.1 fcbat ? fcb aging timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.9.1.2 qosc ? qos control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.9.1.3 fcr ? flooding control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 11.9.1.4 avpml ? vlan priority map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 11.9.1.5 avpmm ? vlan priority map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 11.9.1.6 avpmh ? vlan priority map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 11.9.1.7 tospml ? tos priority map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 11.9.1.8 tospmm ? tos priority map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 11.9.1.9 tospmh ? tos priority map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 11.9.1.10 avdm ? vlan discard map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 11.9.1.11 tosdml ? tos discard map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 8 11.9.2 bmrc - broadca st/multicast rate control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 11.9.3 ucc ? unicast congestion control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 11.9.4 mcc ? multicast congestion control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 11.9.5 prg ? port reservation for giga ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 11.9.6 fcb reservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 11.9.6.1 sfcb ? shar e fcb size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 11.9.6.2 c2rs ? class 2 reserved size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 11.9.6.3 c3rs ? class 3 reserved size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 11.9.6.4 c4rs ? class 4 reserved size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 11.9.6.5 c5rs ? class 5 reserved size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 11.9.6.6 c6rs ? class 6 reserved size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 11.9.6.7 c7rs ? class 7 reserved size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 11.9.7 classes byte gigabit port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 11.9.7.1 qosc00 ? byte_c2_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 11.9.7.2 qosc01 ? byte_c3_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 11.9.7.3 qosc02 ? byte_c4_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 11.9.7.4 qosc03 ? byte_c5_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 11.9.7.5 qosc04 ? byte_c6_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 11.9.7.6 qosc05 ? byte_c7_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 11.9.8 classes byte gigabit port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 11.9.8.1 qosc06 ? byte_c2_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 11.9.8.2 qosc07 ? byte_c3_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 11.9.8.3 qosc08 ? byte_c4_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 11.9.8.4 qosc09 ? byte_c5_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 11.9.8.5 qosc0a ? byte_c6_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 11.9.8.6 qosc0b ? byte_c7_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 11.9.9 classes byte gigabit port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 11.9.9.1 qosc0c ? byte_c2_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 11.9.9.2 qosc0d ? byte_c3_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 11.9.9.3 qosc0e ? byte_c4_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 11.9.9.4 qosc0f ? byte_c5_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 11.9.9.5 qosc10 ? byte_c6_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 11.9.9.6 qosc11 ? byte_c7_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 11.9.10 classes byte gigabit port 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.10.1 qosc12 ? byte_c2_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.10.2 qosc13 ? byte_c3_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.10.3 qosc14 ? byte_c4_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.10.4 qosc15 ? byte_c5_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.10.5 qosc16 ? byte_c6_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.10.6 qosc17 ? byte_c7_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.11 classes byte limit cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
mvtx2802 data sheet 9 zarlink semiconductor inc. 11.9.11.1 qosc30 ? byte_c01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.11.2 qosc31 ? byte_c02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.11.3 qosc32 ? byte_c03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.12 classes wfq credit - port g0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.12.1 qosc33 ? credit_c0_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.12.2 qosc34 ? credit_c1_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.9.12.3 qosc35 ? credit_c2_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.9.12.4 qosc36 ? credit_c3_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.12.5 qosc37 ? credit_c4_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.12.6 qosc38 ? credit_c5_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.12.7 qosc39? credit_c6_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.12.8 qosc3a? credit_c7_g0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.13 classes wfq credit port g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.13.1 qosc3b ? credit_c0_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.9.13.2 qosc3c ? credit_c1_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.9.13.3 qosc3d ? credit_c2_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.13.4 qosc3e ? credit_c3_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.13.5 qosc3f ? credit_c4_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.13.6 qosc40 ? credit_c5_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.13.7 qosc41? credit_c6_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.13.8 qosc42? credit_c7_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.13.9 classes wfq credit port g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 11.9.13.10 qosc43 ? credit_c0_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 11.9.13.11 qosc44 ? credit_c1_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 11.9.13.12 qosc45 ? credit_c2_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13.13 qosc46 ? credit_c3_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13.14 qosc47 ? credit_c4_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13.15 qosc48 ? credit_c5_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13.16 qosc49? credit_c6_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13.17 qosc4a? credit_c7_g2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.14 classes wfq credit port g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.9.14.1 qosc4b ? credit_c0_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.9.14.2 qosc4 ? credit_c1_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 11.9.14.3 qosc4d ? credit_c2_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.14.4 qosc4e ? credit_c3_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.14.5 qosc4f ? credit_c4_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.14.6 qosc50 ? credit_c5_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.14.7 qosc51? credit_c6_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.14.8 qosc52? credit_c7_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.15 class 6 shaper control port g0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.15.1 qosc73 ? token_rate_g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.15.2 qosc74 ? token_limit_g0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.16 class 6 shaper control port g1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.16.1 qosc75 ? token_rate_g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.16.2 qosc76 ? token_limit_g1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.17 class 6 shaper control port g2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.17.1 1qosc77 ? token_rate_g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.17.2 qosc78 ? token_limit_g2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.18 class 6 shaper control port g3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.18.1 qosc79 ? token_rate_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.18.2 qosc7a ? token_limit_g3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.19 rdrc0 ? wred rate control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 11.9.20 rdrc1 ? wred rate control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 11.10 group 6 address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
mvtx2802 data sheet 10 zarlink semiconductor inc. 11.10.1 misc group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 11.10.1.1 mii_op0 ? mii register option 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 11.10.1.2 mii_op1 ? mii register option 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 11.10.2 fen ? feature register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 11.10.2.1 miic0 ? mii command register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.10.2.2 miic1 ? mii command register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.10.2.3 miic2 ? mii command register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.10.2.4 miic3 ? mii command register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.10.2.5 miid0 ? mii data register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.10.2.6 miid1 ? mii data register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.10.2.7 led mode ? led control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 11.10.2.8 checksum - eeprom checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.10.3 led user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.10.3.1 leduser0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.10.3.2 leduser1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.10.3.3 leduser2/ledsig2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 11.10.3.4 leduser3/ledsig3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 11.10.3.5 leduser4/ledsig4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 11.10.3.6 leduser5/ledsig5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 11.10.3.7 leduser6/ledsig6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 11.10.3.8 leduser7/ledsig1_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 06 11.10.4 miinp0 ? mii next page data register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 11.10.5 miinp1 ? mii next page data regi ster 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 11.11 group f address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 11.11.1 cpu access group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 11.11.1.1 gcr-global control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 11.11.1.2 dcr-device status and signature register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 11.11.1.3 dcr01-giga port status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11.11.1.4 dcr23-giga port status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 11.11.1.5 dpst ? device port status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 11.11.1.6 dtst ? data read back register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 12.0 bga and ball signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 12.1 bga views (top-view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 12.2 ball- signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 12.2.1 ball signal description in managed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 12.2.2 ball ? signal description in unmanaged mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 24 12.3 ball signal name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 12.4 characteristics and timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 12.4.1 absolute maxi mum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 12.4.2 dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 12.4.3 recommended operating cond itions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 12.5 ac characteristics and timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 12.5.1 typical reset & bootstrap timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 12.5.2 typical cpu timing diagram for a cpu write cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 12.5.3 typical cpu timing diagram for a cpu read cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 12.5.4 local frame buffer zbt sram memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 12.5.4.1 local zbt sram memory interface a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 12.5.5 local switch database sbram memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 12.5.5.1 local sbram memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6 12.5.6 media independent interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 12.5.7 gigabit media independent interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 12.5.8 pcs interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 12.5.9 led interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12.5.10 mdio input setup and hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
mvtx2802 data sheet 11 zarlink semiconductor inc. 12.5.11 i2c input setup timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 12.5.12 serial interface setup timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
mvtx2802 data sheet list of figures 12 zarlink semiconductor inc. figure 1 - MVTX2802Ag functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 figure 2 - overview of the MVTX2802Ag cpu interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 3 - data transfer format for i2c in terface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 4 - MVTX2802Ag sram interface block diagram (dmas for gigabit ports). . . . . . . . . . . . . . . . . . . . . . . 21 figure 5 - buffer partition scheme used in the MVTX2802Ag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 6 - timing diagram for serial mode in led interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 figure 7 - typical reset & bootstrap timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 figure 8 - typical cpu timing diagram for a cpu write cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 figure 9 - typical cpu timing diagram for a cpu read cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 figure 10 - local memory interface ? input setup and hold timi ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 figure 11 - local memory interface - output valid delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 figure 12 - local memory interface ? input setup and hold timi ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 figure 13 - local memory interface - output valid delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 figure 14 - ac characteristics ? media in dependent interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 figure 15 - ac characteristics ? media in dependent interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 figure 16 - ac characteristics- gmii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 figure 17 - ac characteristics ? gigabit media independent interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 figure 18 - ac characteristics ? pcs interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 figure 19 - ac characteristics ? pcs interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 figure 20 - ac characteristics ? pcs interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 figure 21 - ac characteristics ? led interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 figure 22 - mdio input setup and hold timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 figure 23 - mdio output delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 figure 25 - i2c output delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 figure 26 - serial interface setup timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 figure 27 - serial interface output delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
mvtx2802 data sheet list of tables 13 zarlink semiconductor inc. table 1 - two-dimensional world traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 2 - four qos configurations per port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 table 3 - wred dropping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 table 4 - mapping between MVTX2802Ag and ietf diffserv classe s for gigabit ports . . . . . . . . . . . . . . . . . . . 32 table 5 - MVTX2802Ag features enabling ietf diffserv standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 table 6 - reset & bootstrap timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 table 7 - ac characteristics ? local frame buffer zbt-sram memo ry interface a . . . . . . . . . . . . . . . . . . . . . . 145 table 8 - ac characteristics ? local switch database sbram memo ry interface . . . . . . . . . . . . . . . . . . . . . . . 146 table 9 - ac characteristics ? media independent interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 table 10 - ac characteristics ? gigabit media independent interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 table 11 - ac characteristics ? led interf ace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 table 12 - mdio timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 table 13 - i2c timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 table 14 - serial interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
mvtx2802 data sheet 14 zarlink semiconductor inc. 1.0 block functionality 1.1 frame data buffer (fdb) interfaces the fdb interface supports pipelined zbt-sram 64-bi t wide memory at 133 mhz. at 133 mhz, the aggregate memory bandwidth is 8.5 gbps, which is enough to support 4 gigabit ports at full wire speed switching. a patent pending scheme is used to access the fdb memory. each slot has one tick to read or write 8 bytes. 1.2 switch database (sdb) interface a pipelined synchronous burst sram (sbram) memory is used to store the switch database information including mac table, vlan table and ip multicast t able. search engine accesses the switch database via sdb interface. the sdb memory has 32-bit wide bus at 133 mhz. 1.3 gmii/pcs mac module (gmac) the gmii/pcs media access control (gmac) module pr ovides the necessary buffers and control interface between the frame engine (fe) and the external physi cal device (phy). the mvtx 2802ag has two interfaces, gmii or pcs. the gmac of the MVTX2802Ag meets t he ieee 802.3z specificati on and supports the mii/gmii and pcs interfaces. it is able to operate in 10m/100m/1g in full duplex mode with a flow control mechanism. it has the options to insert source address/crc/vlan id to each frame. the gmii/pcs module also supports hot plug detection. 1.4 cpu interface module one extra port is dedicated to the cpu via the cpu inte rface module. the cpu interf ace utilizes a 16/8-bit bus in managed mode. it also supports a serial and an i 2 c interface, which provides an easy way to configure the system if unmanaged. 1.5 management module the cpu can send a control frame to access or configure the internal network management database. the management module decodes the control frame and ex ecutes the functions requested by the cpu. 1.6 frame engine the main function of the frame engine is to forward a frame to its proper destination port or ports. when a frame arrives, the frame engine parses the frame header (64 by tes) and formulates a switching request which is sent to the search engine to resolve the destination port. the a rriving frame is moved to the fdb. after receiving a switch response from the search engine, the fram e engine performs transmission scheduling based on the frame?s priority. the frame engine forwards the frame to the mac module when the frame is ready to be sent. 1.7 search engine the search engine resolves the frame?s destination port or ports according to the destination mac address (l2) or ip multicast address (ip multicast packet) by searchi ng the database. it also perf orms mac learning, priority assignment and trunking functions. 1.8 led interface the led interface can be operated in a serial mode or a parallel mode. in the serial mode, the led interface uses 3 pins for carrying 4 port status signals. in the para llel mode, the interface can drive leds by 8 status pins. the led port is shared with bootstrap pins. in order to avoid mis-reading, a buffer must be used to isolate the led circuitry from the bootstrap pins during bootstrap cycle (the bootstraps are sampled at the rising edge of the #reset).
mvtx2802 data sheet 15 zarlink semiconductor inc. 1.9 internal memory several internal tables are required and are described as follows: ? frame control block (fcb) - each fcb entry contai ns the control information of the associated frame stored in the fdb, e.g. frame size, read/ write pointer, transmission priority, etc. ? network management (nm) database - the nm database c ontains the information in the statistics counters and mib. ? mct link table - the mct link table stores the link ed list of mct entries that have collisions in the external mac table. ? vlan port aging table - this table provides the aging status of vlan port association status. search engine maintains this table and informs the cpu when the entry is ready to age out. 2.0 system configuration 2.1 management and configuration two modes are supported in the MVTX2802Ag: managed and unmanaged. in managed mode, the MVTX2802Ag uses an 8-or 16-bit cpu interface very si milar to the industry standard architecture (isa) specification. in unmanaged mode, the MVTX2802Ag has no cpu but can be configured by eeprom using an i 2 c interface at bootup, or via a synchronous serial interface otherwise. 2.2 managed mode in managed mode, the MVTX2802Ag uses an 8-or 16-bit cp u interface very similar to the isa bus. the MVTX2802Ag cpu interface provides for easy and effect ive management of the switching system. the figure below provides an overview of the cpu interface.
mvtx2802 data sheet 16 zarlink semiconductor inc. figure 2 - overview of the MVTX2802Ag cpu interface 2.3 register configuration, frame transmission, and frame reception the MVTX2802Ag has many programmable parameters, covering such functions as qos weights, vlan control. in managed mode, the cpu interface provides an easy way of configuring these parameters. the parameters are contained in 8-bit configuration regist ers. the MVTX2802Ag allows indirect access to these registers, as follows: ? two ?index? registers (addresses 000 and 001) need to be written, to indicate the desired 16-bit register address. ? to indirectly configure the register addressed by the two index registers, a ?configure data? register (address 010) must be written with the desired 8-bit data. ? similarly, to read the value in the register addressed by the two index registers, the ?configure data? register can now simply be read. in summary, access to the many internal registers is ca rried out simply by directly accessing only three registers ? two registers to indicate the address of the desired parameter, and one register to read or write a value. of course, because there is only one bus master, there can never be any conflict between reading and writing the configuration registers. cpu frame receive fifo i/o mux index reg 1 (addr = 001) index reg 0 (addr = 000) response (addr = 111) config (addr = 010) cpu (addr = 011) command/ (addr = 100) interrupt reg (addr = 101) control frame (addr = 110) data reg data reg statusreg reg (ro) cpu frame cpu frame transmit fifo internal registers synchronous serial interface i/o mux 16-bit address interrupt 8/16-bit data bus frame receive fifo frame transmit fifo frame transmit fifo 8/16-bit data bus 8-bit data bus 3-bit addr 8/16-bit data bus process mux search engine q0 q1 rd_cyc, wr_cyc to rate control ram statistic counter ram fcb ram mct ram external sram vlan index cpu interface data reg
mvtx2802 data sheet 17 zarlink semiconductor inc. 2.3.1 ethernet frames the cpu interface is also responsible for receiving and transmitting standard ethernet frames to and from the cpu. to transmit a frame from the cpu: ? the cpu writes a ?data frame? register (address 011) with the data it wants to transmit. after writing all the data, it then writes the frame size, destination port number, and frame status. ? the MVTX2802Ag forwards the ethernet frame to the desired destination port, no longer distinguishing the fact that the frame originated from the cpu. to receive a frame into the cpu: ? the cpu receives an interrupt when an et hernet frame is available to be received. ? frame information arrives first in the data frame register. this includes source port number, frame size, and vlan tag. ? the actual data follows the frame information. the cpu uses the frame size information to read the frame out. in summary, receiving and transmitting frames to and from the cpu is a simple process that uses one direct access register only. 2.3.2 control frames in addition to standard ethernet frames described in th e preceding section, the cpu is also called upon to handle special ?control frames,? generated by the mv tx2802ag and sent to the cpu. these proprietary frames are related to such tasks as statistics collecti on, mac address learning, agi ng, etc. all control frames are 64 bytes long. transmitting and receiving these fr ames is similar to transmitting and receiving ethernet frames, except that the register accessed is the ?control frame data? register (address 110). specifically, there are eight types of control frames generated by the cpu and sent to the MVTX2802Ag: ? memory read request ? memory write request ? learn mac address ? delete mac address ? search mac address ? learn ip multicast address ? delete ip multicast address ? search ip multicast address note: memory read and write requests by the cpu may include vlan table, spanning tree, statistic counters, and similar updates. in addition, there are nine types of control fram es generated by the MVTX2802Ag and sent to the cpu: ? interrupt cpu when statistics counter rolls over ? response to memory read request from cpu ? learn mac address ? delete mac address ? delete ip multicast address ? new vlan port ? age out vlan port ? response to search mac address request from cpu ? response to search ip multicast address request from cpu
mvtx2802 data sheet 18 zarlink semiconductor inc. note: deleting ip multicast address requests by the MVTX2802Ag occur when the cpu issues a learn ip multicast address command but the search engine discovers no ram space for storage. the format of the control frame is described in the processor interface application note. 2.4 unmanaged mode in unmanaged mode, the MVTX2802Ag can be configured by eeprom (24c02 or compatible) via an i 2 c interface at boot time, or via a synchronous serial in terface during operation. when the bootstrap td[8] is set to ?0? meaning eeprom installed, the mvtx2802, acting as a master starts the data transfer from the memory to the switch. 2.5 i 2 c interface the i 2 c interface uses two bus lines, a serial data line (sda ) and a serial clock line (scl). the scl line carries the control signals that facilitate the transfer of informa tion from eeprom to the swit ch. data transfer is 8-bit serial and bi-directional, at 50 kbps. data transfer is performed between master and slave ic using a request / acknowledgment style of protocol. the master ic generat es the timing signals and terminates data transfer. the figure below shows the data transfer format. figure 3 - data transfer format for i 2 c interface 2.5.1 start condition generated by the master, the MVTX2802Ag. the bus is considered to be busy after the start condition is generated. the start condition occurs if while the scl line is high, there is a high-to-low transition of the sda line. other than in the start condition (and stop condition), t he data on the sda line must be stable during the high period of scl. the high or low state of sda can only change when scl is low. in addition, when the i 2 c bus is free, both lines are high. 2.5.2 address the first byte after the start condition determines which slave the master will select. the slave in our case is the eeprom. the first seven bits of the first data byte make up the slave address. 2.5.3 data direction the eighth bit in the first byte after the start conditi on determines the direction (r/w) of the message. a master transmitter sets this bit to w; a master receiver sets this bit to r. 2.5.4 acknowledgment like all clock pulses, the master generates the ack nowledgment-related clock pulse. however, the transmitter releases the sda line (high) during the acknowledgment clock pulse. furthermore, the receiver must pull down the sda line during acknowledge pulse so that it remain s stable low during the high period of this clock pulse. an acknowledgment pulse follows every byte transfer. if a slave receiver does not acknowledge after any by te, then the master generates a stop condition and aborts the transfer. if a master receiver does not acknowledge after any byte , then the slave transmitter must release the sda line to let the master generate the stop condition. start slave address r/w ack data 1 (8 bits) ack data 2 ack data m ack stop
mvtx2802 data sheet 19 zarlink semiconductor inc. 2.5.5 data after the first byte containing the address, all bytes that follow are data bytes. each byte must be followed by an acknowledge bit. data is transferred msb-first. 2.5.6 stop condition generated by the master. the bus is considered to be free after the stop condition is generated. the stop condition occurs if while the scl line is high, there is a low-to-high transition of the sda line. the i 2 c interface serves the function of configuring the MVTX2802Ag at boot time. the master is the MVTX2802Ag, and the slave is the eeprom memory. 2.6 synchronous serial interface the synchronous serial interface serves the function of conf iguring the MVTX2802Ag not at boot time but via a pc. the pc serves as master and the MVTX2802Ag serves as slave. the protocol for the synchronous serial interface is nearly identical to the i 2 c protocol. the main difference is that there is no acknowledgment bit after each byte of data transferred. the unmanaged MVTX2802Ag uses a synchronous serial interf ace to program the internal registers. to reduce the number of signals required, the register address, command and data are shifted in serially through the ps_di pin. ps_strobe- pin is us ed as the shift clock. ps_do pin is used as data return path. each command consists of four parts. ? start pulse ? register address ? read or write command ? data to be written or read back any command can be aborted in the middle by sending an abort pulse to the MVTX2802Ag. a start command is detected when ps_di is sampl ed high at ps_strobe - leading edge, and ps_di is sampled low when ps_strobe- falls. an abort command is detected when ps_di is samp led low at ps_strobe - leading edge, and ps_di is sampled high when ps_strobe - falls. 2.6.1 write command ps-strobe- ps_di a0 a2 ... a9 a10 a11 a1 w d0 d1 d2 d3 d4 d5 d6 d7 start address command data 2 extra clocks after last transfer
mvtx2802 data sheet 20 zarlink semiconductor inc. 2.6.2 read command all registers in the MVTX2802Ag can be modifi ed through this synchronous serial interface. 3.0 data forwarding protocol 3.1 unicast data frame forwarding when a frame arrives, it is assigned a handle in memory by the frame control buffer manager (fcb manager). an fcb handle will always be available, because of advance buffer reservations. the memory (zbt-sram) interface is a 64-bit bus, connected to a zbt-sram domain. the receive dma (rxdma) is responsible for multiplexing the data and the address. on a port?s ?turn,? the rxdma will move 8 bytes (or up to the end-of-frame) from the port?s associat ed rxfifo into memory (frame data buffer, or fdb). once an entire frame has been moved to the fdb, and a good end-of-frame (eof) has been received, the rx interface makes a switch request. the rxdma arbitrates among multiple switch requests. the switch request consists of the first 64 bytes of a frame, containing among other things, the source and destination mac addresses of the frame. the search engi ne places a switch response in the switch response queue of the frame engine when done. among other informat ion, the search engine will have resolved the destination port of the frame and will have determined that the frame is unicast. after processing the switch response, the transmission queue manager (txq manager) of the frame engine is responsible for notifying the destination port that it has a frame to forward to it. but first, the txq manager has to decide whether or not to drop the frame, based on global fdb reservations and usage, as well as txq occupancy at the destination. if the frame is not droppe d, then the txq manager links the frame?s fcb to the correct per-port-per-class txq. unic ast txq?s are linked lists of tran smission jobs, represented by their associated frames? fcb?s. there is one linked list for each transmission clas s for each port. there are 8 classes for each of the 4 gigabit ports ? a total of 32 unicast queues. the txq manager is responsible for scheduling trans mission among the queues representing different classes for a port. when the port control module determines that there is room in the mac transmission fifo (txfifo) for another frame, it requests the handle of a new frame from the txq manager. the txq manager chooses among the head-of-line (hol) frames from the per-class queues for that port, using a zarlink semiconductor scheduling algorithm. as at the transmit end, each of the 4 ports has time slots devoted solely to reading data from memory at the address calculated by port control. the transmission dm a (txdma) is responsible for multiplexing the data and the address. on a port?s turn, the txdma will move 8 bytes (or up to the eof) from memory into the port?s associated txfifo. after reading the eof, the port cont rol requests a fcb release for that frame. the txdma arbitrates among multiple buffer release requests. the frame is transmitted from the txfifo to the line. ps_strobe- ps_di ps_do a0 a1 a2 ... a9 a10 a11 r d0 d1 d2 d3 d4 d5 d6 d7 start address command data
mvtx2802 data sheet 21 zarlink semiconductor inc. 3.2 multicast data frame forwarding after receiving the switch response, the txq manager has to make the dropping decision. a global decision to drop can be made, based on global fdb utilization and reservations. if so, then the fcb is released and the frame is dropped. in addition, a selective decision to drop can be made, based on the txq occupancy at some subset of the multicast packet?s destinations. if so, then the frame is dropped at some destinations but not others, and the fcb is not released. if the frame is not dropped at a particular destination port, then the txq manager formats an entry in the multicast queue for that port and class. multicast queues are physical queues (unlike the linked lists for unicast frames). there are 4 multicast queues for each of the 4 gigabit ports. during scheduling, the txq manager treats the unicast queue and the multicast queue of the same class as one logical queue. the port control requests a fcb release only after the eof for the multicast frame has been read by all ports to which the frame is destined. 3.3 frame forwarding to and from cpu frame forwarding from the cpu port to a regular transmission port is nearly the same as forwarding between transmission ports. the only difference is that the physica l destination port must be indicated in addition to the destination mac address. if an invalid port is indicated the frame is forwarded accordingly to the destination mac address. frame forwarding to the cpu port is nearly the same as forw arding to a regular transmission port. the only difference is in frame scheduling. instead of usi ng the patent-pending scheduling algorithms, scheduling for the cpu port is simply based on strict priority. that is, a frame in a high priority queue will always be transmitted before a frame in a lower priority queue. there ar e four output queues to the cpu and one received queue. 4.0 memory interface 4.1 overview the figure below illustrates the first part of the zbt- sram interface for the mvtx 2802ag. as shown, a 64 bit bus zbt-sram bank a is used for tx/rxdma access. because the clock frequency is 133 mhz, the total memory bandwidth is 64 bits 133 mhz = 8.5 gbps, for frame data buffer (fdb) access. not shown in the figure are the cpu port rxdma?s a nd txdma?s, each separately connected to its own bank selector. figure 4 - MVTX2802Ag sram interface block diagram (dmas for gigabit ports) zbt-sram bank a tx dma 0-1 rx dma 0-1 rx dma 2-3 tx dma 2-3
mvtx2802 data sheet 22 zarlink semiconductor inc. 4.2 detailed memory information because the memory bus is 64 bits wide, frames are br oken into 8-byte granules, written to and read from each memory access. in the worst case, a 1-byte-long eof granul e gets written to memory bank. this means that a 7-byte segment of memory bus is idle. the scenario results in a maximum 7 bytes of waste per frame, which is always acceptable because the interframe gap is 20 bytes. the cpu management port gets treated like any other port, reading and writing to memory bank. 5.0 search engine 5.1 search engine overview the MVTX2802Ag search engine is optimized for high th roughput searching, with enhanced features to support: ? up to 64k mac addresses ? up to 4k vlan ? up to 64k ip multicast groups ? 4 groups of port trunking ? traffic classification into 8 transmiss ion priorities, and 2 drop precedence levels ? packet filtering ?security ?ip multicast ? per port, per vlan spanning tree 5.2 basic flow shortly after a frame enters the MVTX2802Ag and is written to the frame data buffer (fdb), the frame engine generates a switch request, which is sent to the sear ch engine. the switch request consists of the first 64 bytes of the frame, which contain all the necessary info rmation for the search engine to perform its task. when the search engine is done, it writes to the switch response queue, and the frame engine uses the information provided in that queue for scheduling and forwarding. in performing its task, the search engine extracts and compresses the useful information from the 64-byte switch request. among the information extracted ar e the source and destination mac addresses, the transmission and discard priorities, whether the frame is unicast or multicast, and vlan id. requests are sent to the external sram switch database to locate the associated entries in the external mct table. when all the information has been collected from extern al sram, the search engine has to compare the mac address on the current entry with the mac address for which it is searching. if it is not a match, the process is repeated on the internal mct table. all mct entries other than the first of each linked list are maintained internal to the chip. if the desired mac address is still not found, then the result is either learning (source mac address unknown) or flooding (destination mac address unknown). in addition, vlan information is used to select the correct set of destination ports for the frame (for multicast), or to verify that the frame?s destination port is associated with the vlan (for unicast). if the destination mac address belongs to a port trunk, then the trunk number is retrieved instead of the port number. but on which port of the trunk will the frame be transmitted? this is easily computed using a hash of the source and destination mac addresses. when all the information is compiled, the switch res ponse is generated, as stated earlier. the search engine also interacts with the cpu with regard to learning and aging.
mvtx2802 data sheet 23 zarlink semiconductor inc. 5.3 search, learning, and aging 5.3.1 mac search the search block performs source mac address and des tination mac address (or destination ip address for ip multicast) searching. as we indicated earlier, if a matc h is not found, then the next ent ry in the linked list must be examined, and so on until a match is f ound or the end of the list is reached. in tag based vlan mode, if the frame is unicast, and the destination port is not a member of the correct vlan, then the frame is dropped; otherwise, the frame is forwarded. if the frame is multicast, this same table is used to indicate all the ports to which the frame will be forw arded. moreover, if port trunking is enabled, this block selects the destination port (among those in the trunk group). in port based vlan mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing port. the main difference in this mode is that the bitmap is not dynamic. ports cannot enter and exit groups because of real-time learning made by a cpu. the mac search block is also responsible for updating the source mac address timestamp and the vlan port association timestamp, used for aging. 5.3.2 learning the learning module learns new mac addresses a nd performs port change operations on the mct database. the goal of learning is to update this database as the networking environment changes over time. when cpu reporting is enabled, learning and port change will be performed when the cpu request queue has room, and a memory slot is available, and a ?learn mac address? message is sent to the cpu. when cpu reporting is disabled, learning and port change will be perfor med based on memory slot availability only. in tag based vlan mode, if the source port is not a member of a classified vlan, a ?new vlan port? message is sent to the cpu. the cpu can decide whether or not the source port can be added to the vlan. 5.3.3 aging aging time is controlled by register 400h and 401h. the aging module scans and ages mct entries based on a programmable ?age out? time interval. as we indicated earlier, the search module updates the source mac address and vlan port association timestamps for each frame it processes. when an entry is ready to be aged, the entry is removed from the table, and a ?delete mac address? message is sent to inform the cpu. supported entry types are dynamic, static, source filter, destination filter, ip multicast, source and destination filter, and secure mac address. only dynamic entries can be aged; whether an entry is static or dynamic is maintained in the ?status? field of the mct data structure. 5.3.4 data structure the mct data structure is used for searching for mac addresses. the structure is maintained by hardware in the search engine. the cpu can make requests to add to, delete from, or search the mct database. the database is essentially a hash table, with collisions reso lved by chaining. the database is partially external, and partially internal, as described earlier: the first mct entry of each linked list is always located in the external sram, and the subsequent mct?s are located internally.
mvtx2802 data sheet 24 zarlink semiconductor inc. 5.3.5 vlan port association table vlan status [2:0] ? 000:not a valid entry ? 001:blocking status, no rx and tx ? 010:not a vlan member, spanning tree learn status ? 011:vlan member, spanning tree learn status ? 100:not a vlan member, spanning tree forward status ? 101:vlan member and is subject to aging, spanning tree forward status (don?t use) ? 110:vlan member and is subject to aging, spanning tree forward status ? 111:vlan member and is not subject to aging, spanning tree forward status cpu can create static vlan port by writing the st atic status to the vlan- port status entry. dynamic vlan and port association can be created by wr iting ?110? to the vlan status. hardware will age and refresh the entry based on the vlan ? port activity. when the vlan ? port is ready to be aged out, a message is sent to cpu and cpu can remove the vlan ? port association by writing ?000? to the vlan status. as a result, the vlan and port are no long associated and the vlan domain is shrunk 6.0 frame engine 6.1 data forwarding summary ? enters the device at the rxmac, the rxdma will move the data from the mac rxfifo to the fdb. data is moved in 8-byte granules in conjunction with the scheme for the sram interface. ? a switch request is sent to the search engine. the search engine processes the switch request. ? a switch response is sent back to the frame engine and indicates whether the frame is unicast or multicast, and its destination port or ports. a vlan table lookup is performed as well. ? a transmission scheduling request is sent in the form of a signal notifying the txq manager. upon receiving a transmission scheduling request, the device will format an entry in the appropriate transmission scheduling queue (txsch q) or queues . there is 8 transmission queues per gigabit port, one for each priority. creation of a queue entry either involves linking a new job to the appropriate linked list if unicast, or adding an entry to a physical queue if multicast. ? when the port is ready to accept the next frame, the txq manager will get the head-of-line (hol) entry of one of the txsch qs, according to the transmission scheduling algorithm (so as to ensure per-class quality of service). the unicast linked list and the multicas t queue for the same port-class pair are treated as one logical queue. ? the txdma will pull frame data from the memory and forward it granule-by-granule to the mac txfifo of the destination port. 31 30 29 27 26 0 valid route reserved port 8 to 0 is vlan status port 8 port 7 port 6 port 5 port 4 port 3 port 2 port 1 port 0 vlan status reserved reserved reserved reserved vlan status vlan status vlan status vlan status
mvtx2802 data sheet 25 zarlink semiconductor inc. 6.2 frame engine details this section briefly describes the functions of each of the modules of the MVTX2802Ag frame engine. 6.2.1 fcb manager the fcb manager allocates fcb handles to incoming frames, and releases fcb handles upon frame departure. the fcb manager is also responsible for enfor cing buffer reservations and limits. the default values can be determined by referring to chapter 8. in addition , the fcb manager is responsible for buffer aging, and for linking unicast forwarding jobs to their correct txsch q. the buffer aging can be enabled or disabled by the bootstrap pin and the aging time is defined in register fcbat. 6.2.2 rx interface the rx interface is mainly responsible for communicati ng with the rxmac. it keeps track of the start and end of frame and frame status (good or bad). upon receiving an end of frame that is good, the rx interface makes a switch request. 6.2.3 rxdma the rxdma arbitrates among switch requests from each rx interface. it also buffers the first 64 bytes of each frame for use by the search engine when the switch request has been made. 6.2.4 txq manager first, the txq manager checks the per-class queue status and global reserved resource situation, and using this information, makes the frame dr opping decision after receiving a switch response. if the decision is not to drop, the txq manager requests that the fcb manager link the unicast frame?s fcb to the correct per-port-per-class txq. if multicast, the txq manager writes to the multicast queue for that port and class. the txq manager can also trigger source port flow control for t he incoming frame?s source if that port is flow control enabled. second, the txq manager handles transmission scheduling; it schedules transmission among the queues representing different classes for a port. once a frame has been scheduled, the txq manager reads the fcb information and writes to the correct port control module. 6.3 port control the port control module calculates the sram read addr ess for the frame currently being transmitted. it also writes start of frame information and an end of frame flag to the mac txfifo. when transmission is done, the port control module requests that the buffer be released. 6.4 txdma the txdma multiplexes data and address from port control, and arbitrates among buffer release requests from the port control modules. 7.0 quality of se rvice and flow control 7.1 model quality of service (qos) is an all-encompassing term fo r which different people have different interpretations. in this chapter, by quality of service assurances, we mean the allocation of chip resources so as to meet the latency and bandwidth requirements associated with each traffic class. we do not presuppose anything about the offered traffic pattern. if the traffic load is light, then ensuring quality of service is straightforward. but if the traffic load is heavy, the MVTX2802Ag must intelligently allocate resources so as to assure quality of service for high priority data.
mvtx2802 data sheet 26 zarlink semiconductor inc. we assume that the network manager knows his applications , such as voice, file transfer, or web browsing, and their relative importance. the manager can then subdivi de the applications into classes and set up a service contract with each. the contract may consist of bandwidt h or latency assurances per class. sometimes it may even reflect an estimate of the traffic mix offere d to the switch, though this is not required. the table below shows examples of qos applications wi th eight transmission priorities, including best effort traffic for which we provide no bandwidth or latency assurances. in our model, it is possible that a cl ass of traffic may attempt to monopolize system resources by sending data at a rate in excess of the contractually assured bandwidth for that class. a well-behaved class offers traffic at a rate no greater than the agreed-upon rate. by contrast, a misbehaving class offers traffic that exceeds the agreed-upon rate. a misbehaving class is formed fr om an aggregation of misb ehaving microflows. to ac hieve high link utilization, a misbehaving class is allowed to use any idle bandwi dth. however, the quality of service (qos) received by well-behaved classes must never suffer. as table 1 illustrates, each traffic class may have its own distinct properties and applications. as shown, classes may receive bandwidth assurances or latency bounds. in the example, p7, the highest transmission class, requires that all frames be transmitted within 0.2 ms , and receives 30% of the 1 gbps of bandwidth at that port. best-effort (p1-p0) traffic forms a lower tier of se rvice that only receives ba ndwidth when none of the other classes have any traffic to offer. in addition, each transmission class has two subclasse s, high-drop and low-drop. well-behaved users should not lose packets. but poorly behaved users ? users who send data at too high a rate ? will encounter frame class example assured bandwidth (user defined) low drop subclass (if class is oversubscribed, these packets are the last to be dropped.) high drop subclass (if class is oversubscribed, these packets are the first to be dropped.) highest transmission priorities, p7 latency < 200 s 300 mbps sample application: control information highest transmission priorities, p6 latency < 200 s 200 mbps sample applications: phone calls; circuit emulation sample application: training video; other multimedia middle transmission priorities, p5 latency < 400 s 125 mbps sample application: interactive activities sample application: non-critical interactive activities middle transmission priorities, p4 latency < 800 s 250 mbps sample application: web business low transmission priorities, p3 latency < 1600 s 80 mbps sample application: file backups low transmission priorities, p2 latency < 3200 s 45 mbps sample application: email sample application: web research best effort, p1-p0 ? sample application: casual web browsing total 1 gbps table 1 - two-dimensional world traffic
mvtx2802 data sheet 27 zarlink semiconductor inc. loss, and the first to be discarded will be high-drop. of course, if this is insuffic ient to resolve the congestion, eventually some low-drop frames are dropped as well. table 1 shows that different types of applications may be placed in different boxes in the traffic table. for example, web search may fit into the category of high-loss , high-latency-tolerant traffic, whereas voip fits into the category of low-loss, low-latency traffic. 7.2 four qos configurations there are four basic pieces to qos scheduling in the MVTX2802Ag: strict priority (sp), delay bound, weighted fair queuing (wfq), and best effort (be). using these four pieces, there are four different modes of operation, as shown in table 2. the default configuration is six delay-bounded queues a nd two best-effort queues. the delay bounds per class are 0.16 ms for p7 and p6, 0.32 ms for p5, 0.64 ms for p4, 1.28 ms for p3, and 2.56 ms for p2 . best effort traffic is only served when there is no delay-bounded traffic to be served. p1 has strict priority over p0. we have a second configuration in which there are two strict priority queues, four delay bounded queues, and two best effort queues. the delay bounds per class are 0.32 ms for p5, 0.64 ms for p4, 1.28 ms for p3, and 2.56 ms for p2. if the user is to choose this configur ation, it is important that p7-p6 (sp) traffic be either policed or implicitly bounded (e.g. if the incoming sp traffi c is very light and predictably patterned). strict priority traffic, if not admission-controlled at a prior stage to the MVTX2802Ag, can have an adverse effect on all other classes? performance. p7 and p6 are both sp classes, and p7 has strict priority over p6. the third configuration contains two strict priority queues and six queues receiving a bandwidth partition via wfq. as in the second configuration, strict pr iority traffic needs to be carefully controlled. in the fourth configuration, all queues are served using a wfq service discipline. 7.3 delay bound in the absence of a sophisticated qos server and si gnaling protocol, the MVTX2802Ag may not be assured of the mix of incoming traffic ahead of time. to cope with this uncertainty, our delay assurance algorithm dynamically adjusts its scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (hol) frames. as a result, we as sure latency bounds for all admitted frames with high confidence, even in the presence of system-wide conges tion. our algorithm identif ies misbehaving classes and intelligently discards frames at no detriment to well -behaved classes. our algorithm also differentiates between high-drop and low-drop traffic with a weighted ra ndom early drop (wred) approach. random early dropping prevents congestion by randomly dropping a percentage of high-drop frames even before the chip?s buffers are completely full, while still largely sparing low-drop frames. this allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. finally, the delay bound algorithm also achieves bandwidth partitioning among classes. p7 p6 p5 p4 p3 p2 p1 p0 op1 ( default) delay bound be op2 sp delay bound be op3 sp wfq op4 wfq table 2 - four qos configurations per port.
mvtx2802 data sheet 28 zarlink semiconductor inc. 7.4 strict priority and best effort when strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. two of our four qos configurations include strict priority queues. the goal is for strict priority classes to be used for ietf expedited forwarding (ef), where performance guar antees are required. as we have indicated, it is important that strict priority traffic be either polic ed or implicitly bounded, so as to keep from harming other traffic classes. when best effort is part of the scheduling algorithm , a queue only receives bandwidth when none of the other classes have any traffic to offer. two of our four qos configurations include best effort queues. the goal is for best effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance. however, in a typical network setting, mu ch best effort traffic will indeed be transmitted, and with an adequate degree of expediency. because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best effort traffic. furthermore, because we assume that strict priority traffic is carefully controlled before entering the MVTX2802Ag, we do not enforce a fair bandwid th partition by dropping strict priority traffic. to summarize, dropping to enforce quality of service (i.e. bandwidth or delay) does not apply to strict priority or best effort queues. we only drop frames from best effort and strict priority queues when global buffer resources become scarce. 7.5 weighted fair queuing in some environments ? for example, in an environment in which delay assurances are not required, but precise bandwidth partitioning on small time scales is essential - wfq may be preferable to a delay-bounded scheduling discipline. the MVTX2802Ag provides th e user with a wfq option with the understanding that delay assurances cannot be provided if the incoming traf fic pattern is uncontrolled. the user sets eight wfq ?weights? such that all weights are whole numbers and sum to 64. this provides per-class bandwidth partitioning with error within 2%. in wfq mode, though we do not assure frame latency, the MVTX2802Ag still retains a set of dropping rules that helps to prevent congestion and trigger higher level protocol end-to-end flow control. as before, when strict priority is combined with wfq, we do not have special dropping rules for the strict priority queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. however, we do indeed drop frames from sp queues for global buffer management purposes. in addition, queues p1 and p0 are treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth from a wfq scheduling perspective. what this means is that these particular queues are only affected by dropping when the global buffer count becomes low. 7.6 shaper although traffic shaping is not a primary function of the MVTX2802Ag, the chip does implement a shaper for expedited forwarding (ef). our goal in shaping is to control the peak and av erage rate of traffic exiting the MVTX2802Ag. shaping is limited to class p6 (the second hi ghest priority). this means that class p6 will be the class used for ef traffic. (by contrast, we assume cla ss p7 will be used for control packets only.) if shaping is enabled for p6, then p6 traffic must be scheduled using strict priority. with reference to table 2, only the middle two qos configurations may be used. peak rate is set using a programmable whole number, no greater than 64 (register qos-credit_c6_gn). for example, if the setting is 32, then the peak rate for shaped traffic is 32/64 1000 mbps = 500 mbps. average rate is also a programmable whole number, no greater than 64, and no greater than the peak rate. for example, if the setting is 16, then the average rate for shaped traffic is 16/64 1000 mbps = 250 mbps. as a consequence of the above settings in our example, shaped traffic will exit the MVTX2802Ag at a rate always less than 500 mbps, and averaging no greater than 250 mbps.
mvtx2802 data sheet 29 zarlink semiconductor inc. also, when shaping is enabled, it is pos sible for a p6 queue to explode in length if fed by a greedy source. the reason is that a shaper is by definition not work-cons erving; that is, it may hold back from sending a packet even if the line is idle. though we do have global resource management, we do nothing to prevent this situation locally. we assume sp traffic is policed at a prior stage to the MVTX2802Ag. 7.7 wred drop threshold management support to avoid congestion, the weighted random early detection (wred) logic drops packets according to specified parameters. the following table summar izes the behaviour of the wred logic. in the table, |px| is the byte count in queue px. the wred logic has three drop levels, depending on the value of n, which is based on the number of bytes in the priority queues. if delay bound scheduling is used, n equals 16|p7| + 16|p6| + 8|p5| + 4|p4| + 2|p3| + |p2|. if wfq scheduling is used, n equals |p7| + |p6| + |p5| + |p4| + |p3| + |p2|. each drop level has defined high-drop and low-drop percen tages, which indicate the percentage of high-drop and low-drop packets that will be dropped at that level. the x, y, and z percent paramete rs can be programmed using the registers rdrc0 and rdrc1. parameters a-f are the by te count thresholds for each priority queue, and are also programmable. when using delay bound scheduling, the values selected for a-f also control the approximate bandwidth partition among the traffic classes; see application note. 7.8 buffer management because the number of frame data buffer (fdb) slots is a scarce resource, and because we want to ensure that one misbehaving source port or class cannot harm the per formance of a well-behaved source port or class, we introduce the concept of buffer management into the MVTX2802Ag. our buffer management scheme is designed to divide the total buffer space into numer ous reserved regions and one shared pool (see figure 5). as shown in the figure, the fdb pool is divided into several parts. a reserved region for temporary frames stores frames prior to receiving a switch response. such a temporary region is necessary, because when the frame first enters the MVTX2802Ag, its destination port and class are as yet unknown, and so the decision to drop or not needs to be temporarily postponed. this ens ures that every frame can be received first before subjecting it to the frame drop discipline after classifying. six reserved sections, one for each of the highest six pr iority classes, ensure a programmable number of fdb slots per class. the lowest two classes do not receive any buffer reservation. another segment of the fdb reserves space for each of the 4 gigabit ports and cpu port. these source port buffer reservations are programmable. these 9 reserv ed regions make sure that no well-behaved source port can be blocked by another misbehaving source port. p7 p6 p5 p4 p3 p2 high drop low drop level 1 n 240 |p7| a kb |p6| b kb |p5| c kb |p4| d kb |p3| e kb |p2| f kb x% 0% level 2 n 280 y% z% level 3 n 320 100% 100% table 3 - wred dropping scheme
mvtx2802 data sheet 30 zarlink semiconductor inc. in addition, there is a shared pool , which can store any type of frame. the registers related to the buffer management logic are: ? prg- port reservation for gigabit ports and cpu port ? sfcb- share fcb size ? c2rs- class 2 reserved size ? c3rs- class 3 reserved size ? c4rs- class 4 reserved size ? c5rs- class 5 reserved size ? c6rs- class 6 reserved size ? c7rs- class 7 reserved size figure 5 - buffer partition scheme used in the MVTX2802Ag 7.8.1 dropping when buffers are scarce summarizing the two examples of local dropping discussed earlier in this chapter: ? if a queue is a delay-bounded queue, we have a multilev el wred drop scheme, designed to control delay and partition bandwidth in case of congestion. ? if a queue is a wfq-scheduled queue, we have a mult ilevel wred drop scheme, designed to prevent congestion. in addition to these reasons for dropping, the mvtx280 2ag also drops frames when global buffer space becomes scarce. the function of buffer management is to ensure that such droppings cause as little blocking as possible. temporary reservation r tmp per-source reservations 8-r 1g per-class r p7 , r p6 ,...r p2 shared pool s reservations
mvtx2802 data sheet 31 zarlink semiconductor inc. 7.9 flow control basics because frame loss is unacceptable for some applicati ons, the MVTX2802Ag provides a flow control option. when flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a source port, sending a packet to this switch, to temporarily hold off. while flow control offers the clear benefit of no packet lo ss, it also introduces a problem for quality of service. when a source port receives an ethernet flow control si gnal, all microflows originati ng at that port, well-behaved or not, are halted. a single packet destined for a co ngested output can block other packets destined for un-congested outputs. the resulting head-of-line blocki ng phenomenon means that quality of service cannot be assured with high confidence when flow control is enabled. in the MVTX2802Ag, each source port can independently have flow control enabled or disabled. for flow control enabled ports, by default all frames are treated as lowest priority during trans mission scheduling. this is done so that those frames are not exposed to the wred dropping scheme. frames from flow control enabled ports feed to only one queue at the destination, the queue of lowest priority. what this means is that if flow control is enabled for a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible expense of minimum bandwidt h or maximum delay assurances. in addition, these ?downgraded? frames may only use the shared pool or th e per-source reserved pool in the fdb; frames from flow control enabled sources may not use reserved fdb slots for the highest six classes (p2-p7). the MVTX2802Ag does provide a system-wide option of pe rmitting normal qos scheduling (and buffer use) for frames originating from flow control enabled ports. when this programmable option is active, it is possible that some packets may be dropped, even though flow control is on. the reason is that intelligent packet dropping is a major component of the MVTX2802Ag?s approach to ensuring bounded delay and minimum bandwidth for high priority flows. 7.9.1 unicast flow control for unicast frames, flow control is triggered by source port resource availability. recall that the MVTX2802Ag?s buffer management scheme allocates a reserved number of fdb slots for each source port. if a programmed number of a source port?s reserved fdb slots have been used, then flow control xoff is triggered. xon is triggered when a port is currently being flow controlle d, and all of that port?s reserved fdb slots have been released. note that the MVTX2802Ag?s per-source-port fdb reservati ons assure that a source port that sends a single frame to a congested destination will not be flow controlled. 7.9.2 multicast flow control in unmanaged mode, a global buffer counter triggers flow control for multicast frames. when the system exceeds a programmable threshold of multicast packets, xoff is triggered. xon is triggered when the system returns below this threshold. mcc register programs the threshold. in managed mode, per-vlan flow control is used for multicas t frames. in this case, flow control is triggered by congestion at the destination. the MVTX2802Ag checks each destination to which a multicast packet is headed. for each destination port, the occupancy of the lowest-priority transmission queue (measured in number of frames) is compared against a programmable congestion threshold. if congestion is detected at even one of the packet?s destinations, then xoff is triggered. in addition, each source port has an 4-bit port map record ing which port or ports of the multicast frame?s fanout were congested at the time xoff was triggered. all por ts are continuously monitored for congestion, and a port is identified as uncongested when its queue occupancy falls below a fixed threshold. when all those ports that were originally marked as congested in the port map have become unc ongested, then xon is triggered, and the 4-bit vector is reset to zero. the MVTX2802Ag also provides the option of disabling multicast flow control. note: if port flow control is on, qos performance will be affected.
mvtx2802 data sheet 32 zarlink semiconductor inc. 7.10 mapping to ietf diffserv classes the mapping between priority classes discussed in this chapter and elsewhere is shown below. as the table illustrates, p7 is used solely for netw ork management (nm) frames. p6 is used for expedited forwarding service (ef). classes p2 through p5 correspond to an assured forwarding (af) group of size 4. finally, p0 and p1 are two best effort (be) classes. features of the MVTX2802Ag that correspond to the r equirements of their associated ietf classes are summarized in the table below. 8.0 port trunking 8.1 features and restrictions a port group (i.e. trunk) can include up to 4 physical ports, but all of the ports in a group must be in the same MVTX2802Ag. in managed mode, there are four trunk groups total. in unmanaged mode, the MVTX2802Ag provides several pre-assigned trunk group options, containing as many as 4 ports per group, or alternatively, as many as 4 total groups. load distribution among the ports in a trunk for unicast is performed using hashing based on source mac address and destination mac address. the other options include source mac address only, destination mac address only. load distribution for multicast is performed similarly. MVTX2802Ag p7 p6 p5 p4 p3 p2 p1 p0 ietf nm ef af0 af1 af2 af3 be0 be1 table 4 - mapping between MVTX2802Ag and ietf diffserv classes for gigabit ports network management (nm) and expedited forwarding (ef) ? global buffer reservation for nm and ef ? shaper for ef traffic ? option of strict priority scheduling ? no dropping if admission controlled assured forwarding (af) ? four af classes ? programmable bandwidth partition, with option of wfq service ? option of delay-bounded service keeps delay under fixed levels even if not admission-controlled ? random early discard, with programmable levels ? global buffer reservation for each af class best effort (be) ? two be classes ? service only when other queues are idle means that qos not adversely affected ? random early discard, with programmable levels ? traffic from flow control enabled ports automatically classified as be table 5 - MVTX2802Ag features enabling ietf diffserv standards
mvtx2802 data sheet 33 zarlink semiconductor inc. if a vlan includes any of the ports in a trunk group, all the ports in that trunk group should be in the same vlan member map. the MVTX2802Ag also provides a safe fail-over mode for port trunking automatically. if one of the ports in the trunking group goes down, the MVTX2802Ag will automatically redistribute the traffic over to the remaining ports in the trunk in unmanaged mode. in managed mode, the software can perform similar tasks. 8.2 unicast packet forwarding the search engine finds the destination mct entry, and if the status field says that the destination address found belongs to a trunk, then the group number is retrieved instead of the port number. in addition, if the source address belongs to a trunk, then the source port?s trunk membership register is checked to determine if the address has moved. a hash key is used to determine the appropriate forwarding port, based on some combination of the source and destination mac addresses for the current packet. the search engine retrieves the vlan member ports from the vlan index table, which consists of 4k entries. the search engine retrieves the vlan member ports from the ingress port?s vlan map. based on the destination mac address, the search engine determines th e egress port from the mct database. if the egress port is member of a trunk group, the packet will be forward to only one port of the trunk group. the vlan map is used to check whether the egress port is a member of the vlan, based on the ingress port. if it is a member, the packet is forwarded otherwise it is discarded. 8.3 multicast packet forwarding for multicast packet forwarding, the device must determine the proper set of ports from which to transmit the packet based on the vlan index and hash key. two functions are required in order to distribute multicast packets to the appropriate destination ports in a port trunking environment. ? determining one forwarding port per group. for multicast packets, all but one port per gro up, the forwarding port, must be excluded. 8.4 preventing multicast packets from looping back to the source trunk the search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with the source port. this is because, when we select the primary forwarding port for each group, we do not take the source port into account. to prevent this, we simply apply one additional filter, so as to block that forwarding port for this multicast packet. 9.0 led interface 9.1 introduction the MVTX2802Ag led block provides two interfaces: a serial output channel, and a parallel time-division interface. the serial output channel provides port status information from the MVTX2802Ag chip in a continuous serial stream. this means that a low cost external device must be used to decode the serial data and to drive an led array for display. by contrast, the parallel time-divis ion interface supports a glueless led m odule. indeed, the parallel interface can directly drive low-current leds wit hout any extra logic. the pin led_pm is used to select serial or parallel mode.
mvtx2802 data sheet 34 zarlink semiconductor inc. for some led signals, the interface also provides a bl inking option. blinking may be enabled for led signals txd, rxd, col, and fc (to be described later). the pi n led_blink is used to enable blinking, and the blinking frequency is around 160 ms. 9.2 serial mode in serial mode, the following pins are utilized: ? led_synco ? a sync pulse that defines the boundary between status frames ? led_clko ? the clock signal ? led_do ? a continuous serial stream of data for all status leds that repeats once every frame time in each cycle (one frame of status information, or one sync pulse), 16 8 bits of data are transmitted on the led_do signal. the sequence of transmission of data bits is as shown in the figure below: figure 6 - timing diagram for se rial mode in led interface the status bits shown in here are flow control (fc), tran smitting data (txd), receiving data (rxd), link up (lnk), speed (sp0 and sp1), full duplex (fdx), and collis ion (col). note that sp[1:0] is defined as 10 for 1 gbps, 01 for 100 mbps, and 00 for 10 mbps. also note that u0-u7 represent user-defined sub-fr ames in which additional status information may be embedded. we will see later that the MVTX2802Ag prov ides registers that can be written by the cpu to indicate this additional status in formation as it becomes available. 9.3 parallel mode in parallel mode, the foll owing pins are utilized: ? led_port_sel[9:0] ? indicates which of the 4 gigabit po rt status bytes or 2 user-defined status bytes is being read out ? led_byteout_[7:0] ? provides 8 bits for 8 different por t status indicators. note that these bits are active low. by default, the system is in parallel mode. in para llel mode, the 10 status bytes are scanned in a continuous loop, with one byte read out per clock cycle, and the appropriate port select bit asserted. 9.4 led control registers an led control register can be used for programming t he led clock rate, sample hold time, and pattern in parallel mode. in addition, the MVTX2802Ag provides 8 registers called leduser[7:0] for user-defined status bytes. during operation, the cpu can write values to these registers, which will be read out to the led interface output (serial p0 info p1 info p2 info p3 info p4 info p5 info p6 info p7 info u0 u1 u2 u3 u4 u5 u6 u7 le_synco le_do le_clko fc txd rxd lnk sp0 sp1 fdx col 07 6 5 4 3 2 1
mvtx2802 data sheet 35 zarlink semiconductor inc. or parallel). only leduser[1:0] are used in parallel m ode. the content of the ledu ser registers will be sent out by the led serial shift logic, or in parallel mode, a byte at a time. because in parallel mode there are only two user-defi ned registers, leduser[7:2] is shared with ledsig[7:2]. for ledsig[j], where j = 2, 3, ?, 6, the corres ponding register is used for programming the led pin led_byteout_[j]. the format is as follows: for j = 2, 3, ?, 5, the value of le d_byteout_[j] equals the logical and of all selected bits. for j = 6, the value is equal to the logical or. therefore, the programmable ledsig[5:2] registers allow any conjunctive formula including any of the 4 status bits (col, fdx, sp1, sp0) or their negations to be sent to the led_byteout_[5:2] pins. similarly, the programmabl e ledsig[6] register allows any disjunctive formula including any of the 4 status bits or thei r negations to be sent to pin led_byteout_[6]. ledsig[7] is used for programming bot h led_byteout_[1] and led_byteout_[0]. as we will see, it has other functions as well. the format is as follows: 7430 col fdx sp1 sp0 col fdx sp1 sp0 bits [3:0] signal polarity: 0: do not invert polarity (high true) 1: invert polarity bits [7:4] signal select: 0: do not select 1: select the corresponding bit 7430 gp rxd txd fc p6 rxd txd fc bits [7] global output polarity: this bit contro ls the output polarity of all led_byteout_ and led_port_sel pins. (default 0) 0: do not invert polarity (led_byteout_[7:0] are high activated; led_port_sel[9:0] are low activated) 1: invert polarity (led_byteout_[7:0] are low activated; led_port_sel[9:0] are high activated) bits [6:4] ? signal select: 0: do not select 1: select the corresponding bit ? the value of led_byteout_[1] equals the logica l or of all selected bits. (default 110) bit [3] ? polarity contro l of led_byteout_[6] (default 0) 0: do not invert 1: invert
mvtx2802 data sheet 36 zarlink semiconductor inc. 10.0 hardware statistics counter 10.1 hardware statistics counters list MVTX2802Ag hardware provides a full set of statistics counters for each ethernet port. the cpu accesses these counters through the cpu interface. all hardware counters are rollover counters. when a counter rolls over, the cpu is interrupted, so that long-term statistics may be kept. the mac detects all statistics, except for the delay exceed discard counter (detected by buff er manager) and the filtering counter (detected by queue manager). the following is the wrapped signal sent to the cpu through the command block. bits [2:0] ? signal select: 0: do not select 1: select the corresponding bit ? the value of led_byteout_[0] equals the logical or of all selected bits. ( default 001) 31 30 26 25 0 status wrapped signal b[0] 0-d bytes sent (d) b[1] 1-l unicast frame sent b[2] 1-u frame send fail b[3] 2-i flow control frames sent b[4] 2-u non-unicast frames sent b[5] 3-d bytes received (good and bad) (d) b[6] 4-d frames received (good and bad) (d) b[7] 5-d total bytes received (d) b[8] 6-l total frames received b[9] 6-u flow control frames received b[10] 7-l multicast frames received b[11] 7-u broadcast frames received b[12] 8-l frames with length of 64 bytes b[13] 8-u jabber frames b[14] 9-l frames with length between 65-127 bytes b[15] 9-u oversize frames b[16] a-l frames with length between 128-255 bytes b[17] a-u frames with length between 256-511 bytes b[18] b-l frames with length between 512-1023 bytes b[19] b-u frames with length between 1024-1528 bytes
mvtx2802 data sheet 37 zarlink semiconductor inc. 10.2 ieee 802.3 hub ma nagement (rfc 1213) 10.2.1 event counters 10.2.1.1 readableoctet counts number of bytes (i.e. octets) contained in good valid frames received. b[20] c-l fragments b[21] c-u1 alignment error b[22] c-u undersize frames b[23] d-l crc b[24] d-u short event b[25] e-l collision b[26] e-u drop b[27] f-l filtering counter b[28] f-u1 delay exceed discard counter b[29] f-u late collision b[30] link status change b[31] current link status notation: x-y x: address in the contain memory y: size and bits for the counter d: d word counter l: 24 bits counter bit[23:0] u: 8 bits counter bit[31:24] u1: 8 bits counter bit[23:16] l: 16 bits counter bit[15:0] u: 16 bits counter bit[31:16] frame size: > 64 bytes, < 1522 bytes if vlan tagged; 1518 bytes if not vlan tagged no fcs (i.e. checksum) error no collisions
mvtx2802 data sheet 38 zarlink semiconductor inc. 10.2.1.2 readableframe counts number of good valid frames received. 10.2.1.3 fcserrors counts number of valid frames received with bad fcs. 10.2.1.4 alignmenterrors counts number of valid frames received with bad alignment (not byte-aligned). 10.2.1.5 frametoolongs counts number of frames received with size exceeding the maximum allowable frame size. frame size: > 64 bytes, < 1522 bytes if vlan tagged; 1518 bytes if not vlan tagged no fcs error no collisions frame size: > 64 bytes, < 1522 bytes if vlan tagged; 1518 bytes if not vlan tagged no framing error no collisions frame size: > 64 bytes, < 1522 bytes if vlan tagged; 1518 bytes if not vlan tagged no framing error no collisions frame size: > 64 bytes, > 1522 bytes if vlan tagged; 1518 bytes if not vlan tagged fcs error: don?t care framing error: don?t care no collisions
mvtx2802 data sheet 39 zarlink semiconductor inc. 10.2.1.6 shortevents counts number of frames received with size less than the length of a short event. 10.2.1.7 runts counts number of frames received with size under 64 by tes, but greater than the length of a short event. 10.2.1.8 collisions counts number of collision events. 10.2.1.9 lateevents counts number of collision events that occurred late (after lateeventthreshold = 64 bytes). 10.2.1.10 verylongevents counts number of frames received with size larger than jabber lockup protection timer (tw3). 10.2.1.11 dataratemisatches for repeaters or hub application only. 10.2.1.12 autopartitions for repeaters or hub application only. frame size: > 64 bytes, < 10 bytes fcs error: don?t care framing error: don?t care no collisions frame size: > 10 bytes, < 64 bytes fcs error: don?t care framing error: don?t care no collisions frame size: any size frame size: any size events are also count ed by collision counter frame size: > jabber
mvtx2802 data sheet 40 zarlink semiconductor inc. 10.2.1.13 totalerrors sum of the following errors: fcs errors alignment errors frame too long short events late events very long events 10.3 ieee ? 802.1 brid ge management (rfc 1286) 10.3.1 event counters 10.3.1.1 inframes counts number of frames received by this port or segment. note: this counter only counts a frame received by this port if and only if it is for a protocol being processed by the local bridge function. 10.3.1.2 outframes counts number of frames transmitted by this port. note: this counter only counts a frame transmitted by this port if and only if it is for a protocol being processed by the local bridge function. 10.3.1.3 indiscards counts number of valid frames received which were di scarded (i.e., filtered) by the forwarding process. 10.3.1.4 delayexceededdiscards counts number of frames discarded due to excessive transmit delay through the bridge. 10.3.1.5 mtuexceededdiscards counts number of frames discarded due to excessive size. 10.4 rmon ? ethernet statistic group (rfc 1757) 10.4.1 event counters 10.4.1.1 drop events counts number of times a packet is dropped, because of lack of available resources. does not include all packet dropping -- for example, random early drop for quality of service support.
mvtx2802 data sheet 41 zarlink semiconductor inc. 10.4.1.2 octets counts the total number of octets (i.e. bytes) in any frames received. 10.4.1.3 broadcastpkts counts the number of good frames received and forwarded with broadcast address. does not include non-broadcast multicast frames. 10.4.1.4 multicastpkts counts the number of good frames received and forwarded with multicast address. does not include broadcast frames. 10.4.1.5 crcalignerrors counts number of frames received with fcs or alignment errors 10.4.1.6 undersizepkts counts number of frames received with size less than 64 bytes. 10.4.1.7 oversizepkts counts number of frames received with size exceeding the maximum allowable frame size. frame size: > 64 bytes, < 1522 bytes if vlan tag (1518 if no vlan) no collisions: frame size: < 64 bytes, no fcs error no framing error no collisions frame size: >1522 bytes if vlan tag (1518 bytes if no vlan) fcs error don?t care framing error don?t care no collisions
mvtx2802 data sheet 42 zarlink semiconductor inc. 10.4.1.8 fragments counts number of frames received with size less than 64 bytes and with bad fcs. 10.4.1.9 jabbers counts number of frames received with size exceeding maximum frame size and with bad fcs. 10.4.1.10 collisions counts number of collision events detected. only a best estimate since collisions can only be detected while in transm it mode, but not while in receive mode. 10.4.1.11 packet count for different size groups six different size groups ? one counter for each: pkts64octets for any packet with size = 64 bytes pkts65to127octets for any packet with size from 65 bytes to 127 bytes pkts128to255octets for any packet with size from 128 bytes to 255 bytes pkts256to511octets for any packet with size from 256 bytes to 511 bytes pkts512to1023octets for any packet with size from 512 bytes to 1023 bytes pkts1024to1518octets for any packet with size from 1024 bytes to 1518 bytes counts both good and bad packets. miscellaneous counters in addition to the statistics groups defined in previ ous sections, the MVTX2802Ag has other statistics counters for its own purposes. we have two counters for flow c ontrol ? one counting the number of flow control frames received, and another counting the number of flow cont rol frames sent. we also have two counters, one for unicast frames sent, and one for non-unicast frames sent. a broadcast or multicast frame qualifies as non-unicast. furthermore, we have a counter called ?frame send fail.? this keeps track of fifo under-runs, late collisions, and collisions that have occurred 16 times. frame size: < 64 bytes framing error don?t care no collisions frame size: > 1522 bytes if vlan tag (1518 bytes if no vlan) framing error don?t care no collisions frame size: any size
mvtx2802 data sheet 43 zarlink semiconductor inc. 11.0 regi ster definition 11.1 MVTX2802Ag register description register description cpu addr (hex) r/w i 2 c addr (hex) default notes 0. ethernet port control registers ? substitute [n] with port number (0..3) ecr1p?n? port control register 1 for port n (n=0-3) 000 + 2n r/w 000+2n c0 ecr2p?n? port control register 2 for port n (n=0-3) 001 + 2n r/w 001+2n 00 ecrmisc1 port control misc1 010 r/w 010 c0 ecrmisc2 port control misc 2 011 r/w 011 00 ggcontrol0 extra gigabit port control ?port 0,1 012 r/w n/a 00 ggcontrol1 extra gigabit port control ?port 2,3 013 r/w n/a 00 activelink active link status port 3:0 016 r/w n/a 00 1. vlan control registers ? substitute [n] with port number (0..3, 8) avtcl vlan type code register low 100 r/w 012 00 avtch vlan type code register high 101 r/w 013 81 pvmap?n?_0 port ?n? configuration register 0 (n=0-3, 8) 102 + 4n r/w 014+4n ff pvmap?n?_1 port ?n? configuration register 1 (n=0-3, 8) 103 + 4n r/w 015+4n ef pvmode vlan operating mode 126 r/w 038 00 2. trunk control registers trunk0 trunk group 0 member 200 r/w na 00 trunk1 trunk group 1 member 201 r/w na 00 trunk2 trunk group 2 member 202 r/w na 00 trunk3 trunk group 3 member 203 r/w na 00 single_ring single ring port map 204 r/w na trunk_ring trunk ring port map 205 r/w na trunk_hash_mode trunk hash mode 206 r/w na 00 trunk0_mode trunk group 0 mode 207 r/w 039 00 trunk0_hash0 trunk group 0 hash 0, 1, 2 destination port 208 r/w na 08 trunk0_hash1 trunk group 0 hash 2, 3, 4, 5 destination port 209 r/w na 82 trunk0_hash2 trunk group 0 hash 5, 6, 7 destination port 20a r/w na 20 trunk0_hash3 trunk group 0 hash 8, 9, 10 destination port 20b r/w na 08 trunk0_hash4 trunk group 0 hash 10, 11, 12, 13 destination port 20c r/w na 82 trunk0_hash5 trunk group 0 hash 13, 14, 15 destination port 20d r/w na 20
mvtx2802 data sheet 44 zarlink semiconductor inc. trunk1_hash0 trunk group 1 hash 0, 1, 2 destination port 20f r/w na 08 trunk1_hash1 trunk group 1 hash 2, 3, 4, 5 destination port 210 r/w na 82 trunk1_hash2 trunk group 1 hash 5, 6, 7 destination port 211 r/w na 20 trunk1_hash3 trunk group 1 hash 8, 9, 10 destination port 212 r/w na 08 trunk1_hash4 trunk group 1 hash 10, 11, 12, 13 destination 213 r/w na 82 trunk1_hash5 trunk group 1 hash 13, 14, 15 destination 214 r/w na 20 trunk2_hash0 trunk group 2 hash 0, 1, 2 destination port 215 r/w na 2c trunk2_hash1 trunk group 2 hash 2, 3, 4, 5 destination port 216 r/w na cb trunk2_hash2 trunk group 2 hash 5, 6, 7 destination port 217 r/w na b2 trunk2_hash3 trunk group 2 hash 8, 9, 10 destination port 218 r/w na 2c trunk2_hash4 trunk group 2 hash 10, 11, 12, 13 destination port 219 r/w na cb trunk2_hash5 trunk group 2 hash 13, 14, 15 destination port 21a r/w na b2 trunk3_hash0 trunk group 3 hash 0, 1, 2 destination port 21b r/w na 2c trunk3_hash1 trunk group 3 hash 2, 3, 4, 5 destination port 21c r/w na cb trunk3_hash2 trunk group 3 hash 5, 6, 7 destination port 21d r/w na b2 trunk3_hash3 trunk group 3 hash 8, 9, 10 destination port 21e r/w na 2c trunk3_hash4 trunk group 3 hash 10, 11, 12, 13 destination port 21f r/w na bc trunk3_hash5 trunk group 3 hash 13, 14, 15 destination port 220 r/w na b2 multicast_hash00 multicast hash result 0 mask bit[7:0] 221 r/w na ff multicast_hash01 multicast hash result 1 mask bit[7:0] 222 r/w na ff multicast_hash02 multicast hash result 2 mask bit[7:0] 223 r/w na ff multicast_hash03 multicast hash result 3 mask bit[7:0] 224 r/w na ff multicast_hash04 multicast hash result 4 mask bit[7:0] 225 r/w na ff multicast_hash05 multicast hash result 5 mask bit[7:0] 226 r/w na ff multicast_hash06 multicast hash result 6 mask bit[7:0] 227 r/w na ff multicast_hash07 multicast hash result 7 mask bit[7:0] 228 r/w na ff multicast_hash08 multicast hash result 8 mask bit[7:0] 229 r/w na ff multicast_hash09 multicast hash result 9 mask bit[7:0] 22a r/w na fff multicast_hash10 multicast hash result 10 mask bit[7:0] 22b r/w na ff multicast_hash11 multicast hash result 11 mask bit[7:0] 22c r/w na ff multicast_hash12 multicast hash result 12 mask bit[7:0] 22d r/w na ff register description cpu addr (hex) r/w i 2 c addr (hex) default notes
mvtx2802 data sheet 45 zarlink semiconductor inc. multicast_hash13 multicast hash result 13 mask bit[7:0] 22e r/w na ff multicast_hash14 multicast hash result 14 mask bit[7:0] 22f r/w na ff multicast_hash15 multicast hash result 15 mask bit[7:0] 230 r/w na ff multicast_hashml multicast hash bit[8] for result 7-0 231 r/w na ff multicast hashmh multicast hash bit[8] for result 15-8 232 r/w na ff 3. cpu port configuration mac0 cpu mac address byte 0 300 r/w na 00 mac1 cpu mac address byte 1 301 r/w na 00 mac2 cpu mac address byte 2 302 r/w na 00 mac3 cpu mac address byte 3 303 r/w na 00 mac4 cpu mac address byte 4 304 r/w na 00 mac5 cpu mac address byte 5 305 r/w na 00 int_mask0 interrupt mask 0 306 r/w na ff int_mask1 interrupt mask 1 307 r/w na ff int_mask2 interrupt mask 2 308 r/w na ff int_mask3 interrupt mask 3 309 r/w na ff int_status0 status of masked interrupt register0 30a ro na int_status1 status of masked interrupt register1 30b ro na intp_mask?n? interrupt mask for mac port 2n, 2n+1 (n=0-1) 30c-30f r/w na ff rqs receive queue select 310 r/w na 00 rqss receive queue status 311 ro na tx_age transmission queue aging time 312 r/w 03b 08 4. search engine configurations agetime_low mac address aging time low 400 r/w 03c 2c agetime_high mac address aging time high 401 r/w 03d 00 v_agetime vlan to port aging time 402 r/w na ff se_opmode search engine operation mode 403 r/w na 00 register description cpu addr (hex) r/w i2c addr (hex) default notes scan scan control register 404 r/w na 00 5. buffer control and qos control fcbat fcb aging timer 500 r/w 03e ff qosc qos control 501 r/w 03f 00 register description cpu addr (hex) r/w i 2 c addr (hex) default notes
mvtx2802 data sheet 46 zarlink semiconductor inc. fcr flooding control register 502 r/w 040 08 avpml vlan priority map low 503 r/w 041 88 avpmm vlan priority map middle 504 r/w 042 c6 avpmh vlan priority map high 505 r/w 043 fa tospml tos priority map low 506 r/w 044 88 tospmm tos priority map middle 507 r/w 045 c6 tospmh tos priority map high 508 r/w 046 fa avdm vlan discard map 509 r/w 047 00 tosdml tos discard map 50a r/w 048 00 bmrc broadcast/multicast rate control 50b r/w 049 00 ucc unicast congestion control 50c r/w 04a 07 mcc multicast congestion control 50d r/w 04b 48 pr100 port reservation for 10/100 ports 50e r/w 04c 00 prg port reservation for giga ports 50f r/w 04d 26 sfcb share fcb size 510 r/w 04e 37 c2rs class 2 reserved size 511 r/w 04f 00 c3rs class 3 reserved size 512 r/w 050 00 c4rs class 4 reserved size 513 r/w 051 00 c5rs class 5 reserved size 514 r/w 052 00 c6rs class 6 reserved size 515 r/w 053 00 c7rs class 7 reserved size 516 r/w 054 00 qosc?n? qos control (n=0 ? 2f) 517?546 r/w 055-084 qosc?n? qos control (n=30 ? 82) 547-599 r/w na rdrc0 wred rate control 0 59a r/w 085 8e rdrc1 wred rate control 1 59b r/w 086 68 6. misc configuration registers mii_op0 mii register option 0 600 r/w 0b1 00 mii_op1 mii register option 1 601 r/w 0b2 00 fen feature registers 602 r/w 0b3 10 miic0 mii command register 0 603 r/w n/a 00 miic1 mii command register 1 604 r/w n/a 00 miic2 mii command register 2 605 r/w n/a 00 miic3 mii command register 3 606 r/w n/a 00 register description cpu addr (hex) r/w i 2 c addr (hex) default notes
mvtx2802 data sheet 47 zarlink semiconductor inc. miid0 mii data register 0 607 ro n/a 00 miid1 mii data register 1 608 ro n/a 00 led led control register 609 r/w 0b4 38 checksum eeprom checksum register 60b r/w 0c5 00 leduser0 led user define register 0 60c r/w 0bb 00 leduser1 led user define register 1 60d r/w 0bc 00 leduser2 led user define reg. 2/led_byte pin 2 60e r/w 0bd 80 leduser3 led user define reg. 3/led_byte pin 3 60f r/w 0be 33 leduser4 led user define reg. 4/led_byte pin 4 610 r/w 0bf 32 leduser5 led user define reg. 5/led_byte pin 5 611 r/w 0c0 20 leduser6 led user define reg. 6/led_byte pin 6 612 r/w 0c1 40 leduser7 led user define reg. 7/led_byte pin 1 & 0 613 r/w 0c2 61 miinp0 mii next page data register0 614 r/w 0c3 00 miinp1 mii next page data register1 615 r/w 0c4 00 e. test group control dtsrl test register low e00 r/w n/a 00 dtsrm test register medium e01 r/w n/a 01 dtsrh test register high e02 r/w n/a 00 tdrb0 test mux read back register [7:0] e03 ro n/a tdrb1 test mux read back register [15:8] e04 ro n/a dtcr test counter register e05 r/w n/a 00 mask0 mask timeout 0 e06 r/w 0b6 00 mask1 mask timeout 1 e07 r/w 0b7 00 mask2 mask timeout 2 e08 r/w 0b8 00 mask3 mask timeout 3 e09 r/w 0b9 00 mask4 mask timeout 4 e0a r/w 0ba 00 f. device configuration register gcr global control register f00 r/w n/a 00 dcr device status and signature register f01 ro n/a dcr01 gigabit port0 port1 status register f02 ro na dcr23 gigabit port2 port3 status register f03 ro na dpst device port status register f06 r/w n/a 00 dtst data read back register f07 ro n/a register description cpu addr (hex) r/w i 2 c addr (hex) default notes
mvtx2802 data sheet 48 zarlink semiconductor inc. note 1. se = search engine 2. fe = frame engine 3. pgs = port group01, 23, 45, and 67 4. mc = mac control 5. tm = timer pllcr pll control register f08 r/w n/a lclkcr lclk control register f09 r/w n/a bclkcr bclk control register f0a r/w n/a bstrrb0 boot strap read back register 0 f0b ro n/a bstrrb1 boot strap read back register 1 f0c ro n/a bstrrb2 boot strap read back register 2 f0d ro n/a bstrrb3 boot strap read back register 3 f0e ro n/a bstrrb4 boot strap read back register 4 f0f ro n/a bstrrb5 boot strap read back register 5 f10 ro n/a da da register fff ro n/a da register description cpu addr (hex) r/w i 2 c addr (hex) default notes
mvtx2802 data sheet 49 zarlink semiconductor inc. 11.2 directly accessed registers 11.2.1 index_reg0 ? address bits [7:0] for indirectly accessed register addresses ? address = 0 (write only) 11.2.2 index_reg1 (only needed for cpu 8-bit bus mode) ? address bits [15:8] for indirectly accessed register addresses ? address = 1 (write only) 11.2.3 data_frame_reg ? data of indirectly accessed registers. (8 bits) ? address = 2 (read/write) 11.2.4 control_frame_reg ? cpu transmit/receive switch frames. (8/16 bits) ? address = 3 (read/write) ? format: (see processor interface application note for more information) - send frame from cpu: (in sequence) frame data (size should be in multiple of 8-byte) 8-byte of frame status (frame size, destination port #, frame o.k. status) - cpu received frame: (in sequence) 8-byte of frame status (frame size, source port #, vlan tag) frame data 11.2.5 command&status ? cpu interface commands (write) and status ? address = 4 (read/write) ? when the cpu reads this register: ? bit [0]: transmit control command 1 ready; must read true before cpu writes new control command 1. ? bit [1]: receive control command 1 ready; must read true before cpu reads a new control command 1. ? bit [2]: receive control command 2 ready; must read true before cpu reads a new control command 2. ? bit [3]: receive cpu frame ready; must read true before re ceiving a cpu frame and at every 8-byte boundary within a cpu frame. ? bit [4]: transmit cpu frame ready; mu st read true before transmitting a cpu frame and at every 16-byte boundary within a cpu frame. ? bit [5]: end of receive cpu frame to indica te that the last 8 by tes need to be read. ? bit [15:6]: reserved. ? when the cpu writes to this register: ? bit [0]: end of transmit control command indicator; set after cpu writes a control command frame into rx buffer. ? bit [1]: end of receive control command 1 indicator; set after cpu reads out a control command 1 frame from tx buffer 1. ? bit [2]: end of receive control command 2 indicator; set after cpu reads out a control command 2 frame from tx buffer 2. ? bit [3]: end of receive cpu frame indi cator. set after cpu reads out a cpu frame or to flush out the rest of cpu
mvtx2802 data sheet 50 zarlink semiconductor inc. frame. ? bit [4]: end of transmit cpu frame indicator. set before writing the la st byte of cpu frame. ? bit [7:5]: reserved and always write 0?s. ? bit [15:8]: reserved and write 0?s in 16-bit mode. 11.2.6 interrupt register ? interrupt sources (8 bits) ? address = 5 (read only) ? when cpu reads this register 11.2.7 control frame buffer1 access register ? address = 6 (read/write) ? when cpu writes to this register, data is written to the control command frame receive buffer ? when cpu reads this register, data is read from the control command frame transmit buffer1 11.2.8 control frame buffer2 access register ? address = 7 (read only) ? when cpu reads this register, data is read from the control command frame transmit buffer 2 indirectly accessed registers 11.3 group 0 address 11.3.1 mac ports group 11.3.1.1 ecr1pn: port n control register ?i 2 c address h00+2n; cpu address:h000+2n (n=0 to 3) ? accessed by cpu, serial interface and i 2 c (r/w) bit [0]: cpu frame interrupt bit [1]: control frame 1 interrup t. control frame receive buffer1 has data for cpu to read bit [2]: control frame 2 interrup t. control frame receive buffer2 has data for cpu to read bit [3] bit [7:4]: from any of the gigabit port interrupt reserve note: this register is not self-cleared. after read ing cpu has to clear the bit writing 0 to it 76 5432 1 0 sp state a-fc port mode bit [4:0] ? port mode (default 2?b00)
mvtx2802 data sheet 51 zarlink semiconductor inc. 11.3.1.2 ecr2pn: port n control register ?i 2 c address: 01+2n; cpu address:h001+2n (n=0 to 3) ? accessed by cpu and serial interface (r/w) bit [4:3] ? 00 - automatic enable auto-negotiation ? this enables hardware state machine for auto-negotiation. ? 01 - limited disable auto-negotiation ? this disables hardware auto-negotiation. hardware only polls mii for link status. use bit [2:0] for config. ? 10 - link down - force link down (disable the port). does not talk to phy. ? 11 - link up ? does not talk to phy. user erc1 [2:0] for config. bit [2] ?1 ? 10mbps (default 1?b0) ? 0 ? 100mbps bit 2 is used only when the port is in mii mode. bit [1] ? 1 ? half duplex (do not use) (default 1?b0) ? 0 ? full duplex bit [0] ? 1 ? flow control off (default 1?b0) ? 0 ? flow control on ? when flow control is on: ? in full duplex mode, the mac transmitter send s flow control frames when necessary. the mac receiver interprets and processes incoming flow control frames. the flow control frame received counter is incremented whenever a flow control frame is received. ? when flow control is off: ? in full duplex mode, the mac transmitter d oes not send flow control frames. the mac receiver does not interpret or process the flow control frames. the flow control frame receiver counter is not incremented. bit [5] ? asymmetric flow control enable. ? 0 ? disable asymmetric flow control ? 1 ? enable asymmetric flow control ? when this bit is set, and flow control is on (bit [0] = 0), don?t send out a flow control frame. but mac receiver interprets and process flow control frames. ( default is 0) bit [7:6] ? ss - spanning tree state (802.1d spanning tree protocol). (default 2?b11) ? 00 ? blocking: frame is dropped ? 01 - listening: frame is dropped ? 10 - learning: frame is dropped. source mac address is learned. ? 11 - forwarding: frame is forwarded. source mac address is learned. 765 3210 security en disl ftf futf bit[0]: ? filter untagged frame (default 0) ?0: disable ? 1: enable ? all untagged frames from this port are discarded or follow security option when security is enable
mvtx2802 data sheet 52 zarlink semiconductor inc. bit[1]: ? filter tag frame (default 0) ?0: disable ? 1: enable - all tagged frames from this port are di scarded or follow security option wh en security is enable bit[2]: ? learning disable (default 0) ? 0: learning is enabled on this port ? 1: learning is disabled on this port bit [5:3:] ? reserved bit[7:6] ? security enable (default 00). the mv tx2802ag checks the incoming data for one of the following conditions: 1. if the source mac address of the incoming packet is in the mac table and is defined as secure address but the ingress port is not the same as the port associated with the mac address in the mac table. a mac address is defined as secure when its entr y at mac table has static status and bit 0 is set to 1. mac address bit 0 (the first bi t transmitted) indicates whether the address is unicast or multicast. as source addresses are always unicast bit 0 is not used (always 0). mvtx2802 uses this bit to define secure mac addresses. 2. if the port is set as learning disable and the source mac address of the incoming packet is not defined in the mac address table. 3. if the port is configured to filter untagged frames and an untagged frame arrives or if the port is configured to filter tagged frames and a tagged frame arrives. if one of these three conditions occurs, the packet will be handled according to one of the following specified options: ?cpu installed ? 00 ? disable port security ? 01 ? discard violating packets ? 10 ? send packet to cpu and destination port ? 11 ? send packet to cpu only ? cpu not installed ? 00 ? disable port security ? 01 ? enable port security. po rt will be disabled when se curity violation is detected ?10 ? n/a ?11 ? n/a
mvtx2802 data sheet 53 zarlink semiconductor inc. 11.3.1.3 ecrmisc1 ? cpu port control register misc1 ?i 2 c address h10, cpu address:h010 ? access by cpu, serial interface and i 2 c (r/w) 11.3.1.4 ecrmisc2 ? cpu port control register misc2 ?i 2 c address h11, cpu address:h011 ? access by cpu, serial interface and i 2 c (r/w) 765 0 ss state reserved bit [5:0] ? reserved bit [7:6] ? ss - spanning tree state (802.1d spanning tree protocol). (default 2?b11) ? 00 ? blocking: frame is dropped ? 01 - listening: frame is dropped ? 10 - learning: frame is dropped. source mac address is learned. ? 11 - forwarding: frame is forwarded. source mac address is learned. 765 3210 security en disl ftf futf bit [0] ? filter untagged frame (default 0) ?0: disable ? 1: enable ? all untagged frames from the cpu are di scarded or follow security option when security is enable security does not make much sense for cpu! bit[1] ? filter tagged frame (default 0) ?0: disable ? 1: enable ? all tagged frames from the cpu are discarded or follow security option when security is enable security does not make much sense for cpu! bit[2] ? learning disable (default 0) ? 1 ? learning is disabled on this port ? 0 ? learning is enabled on this port bit [5:3] ? reserved (default 0) bit[7:6] ? security enable (default 2?b00) ?cpu installed ? 00 ? disable port security ? 01 ? discard violation packet ? 10 ? send packet to cpu and port ? 11 ? send packet to cpu only
mvtx2802 data sheet 54 zarlink semiconductor inc. 11.3.1.5 ggcontrol 0? extra giga port control ? cpu address:h012 ? accessed by cpu and serial interface (r/w) 11.3.1.6 ggc ontrol 1? e xtra giga p ort c ontrol ? cpu address:h013 ? accessed by cpu and serial interface (r/w) 76 54 3 21 0 mii1 rst1 mii0 rst0 bit[0]: ? reset giga port 0 default is 0 ? 0: normal operation ? 1: reset gigabit port 0. example: used when a new phy is connected (hot swap) bit[1]: ? giga port 0 use mii interface (10/100m) default is 0 ? 0: gigabit port operation at 1000m mode ? 1: gigabit port operation at 10/100m mode (mii) bit[3:2]: ? reserved - must be '0' bit[4]: ? reset giga port 1 default is 0 ? 0: normal operation ? 1: reset gigabit port 1. example: used when a new phy is connected (hot swap) bit[5]: ? giga port 1 use mii interface (10/100m) default is 0 ? 0: gigabit port operation at 1000m mode ? 1: gigabit port operation at 10/100m mode (mii) bit[7:6]: ? reserved - must be '0' 765 43 210 mii3 rst3 mii2 rst2 bit[0]: ? reset giga port 2 default is 0 ? 0: normal operation ? 1: reset gigabit port 2. example: used when a new phy is connected (hot swap) bit[1]: ? giga port 2 use mii interface (10/100m) default is 0 ? 0: gigabit port operation at 1000m mode ? 1: gigabit port operation at 10/100m mode (mii) bit[3:2]: ? reserved - must be '0' bit[4]: ? reset giga port 3 default is 0 ? 0: normal operation ? 1: reset gigabit port 3. example: used when a new phy is connected (hot swap)
mvtx2802 data sheet 55 zarlink semiconductor inc. 11.4 group 1 address 11.4.1 vlan group 11.4.1.1 avtcl ? vlan type code register low ?i 2 c address h12; cpu address:h100 ? accessed by cpu, serial interface and i 2 c (r/w) 11.4.1.2 avtch ? vlan type code register high ?i 2 c address h13; cpu address:h101 ? accessed by cpu, serial interface and i 2 c (r/w) ? bit [7:0] vlantype_high: upper 8 bits of the vlan type code (default is 81) 11.4.1.3 pvmap00_0 ? p ort 00 c onfiguration r egister 0 ?i 2 c address h14, cpu address:h102) ? accessed by cpu, serial interface and i 2 c (r/w) in port based vlan mode this register indicates the legal egress ports. example: a ?1? on bit 3 means that packets arriving on port 0 can be sent to port 3. a ?0? on bit 7 means that any packet destined to port 3 will be discarded. in tag based vlan mode this is the default vlan tag. it works with configur ation register pvmap00_1 [7:5] [3:0] to form the default vlan tag. if the received packed is untagged, it receives the default vlan tag. if the packet has a vlan id of 0, then pvid is used to replace the packet?s vlan. bit[5]: ? giga port 3 use mii interface (10/100m) default is 0 ? 0: gigabit port operation at 1000m mode ? 1: gigabit port operation at 10/100m mode (mii) bit[7:6]: ? reserved - must be '0' bit[7:0]: vlantype_low: lower 8 bits of the vlan type code (default 00) bit[3:0]: ? vlan mask for ports 3 to 0 (default f) ? 0 ? disable ? 1 - enable bit[3:0]: pvid [3:0] (default is f)
mvtx2802 data sheet 56 zarlink semiconductor inc. 11.4.1.4 pvmap00_1 ? port 00 configuration register 1 ?i 2 c address h15, cpu address:h103 ? accessed by cpu, serial interface and i 2 c (r/w) in port based vlan mode in tag based vlan mode 11.4.1.5 pvmap00_3 ? port 00 configuration register 3 ?i 2 c address h17, cpu address:h105) ? accessed by cpu, serial interface and i 2 c (r/w) in port based mode bit[7:0]: vlan mask for port 8 ? cpu port (default is ff) 7543 0 unitag port priority ultrust pvid bit[3:0]: ? pvid [11:8] (default is f) bit [4]: ? untrusted port. (default is 0) this register is used to change the vlan priori ty field of a packet to a predetermined priority. ? 1: vlan priority field is chan ged to bit[7:5] at ingress port ? 0: keep vlan priority field bit [7:5]: ? untag port priority (default 7) 765 3210 fp en drop default tx priority fnt reserved bit [1:0]: ? reserved (default 0) bit [2]: ? force untagged out (default 0) ? 0 disable ? 1 force untag output all packets transmitted from this port are untagged. this register is used when this port is connected to legacy equipment that does not support vlan tagging.
mvtx2802 data sheet 57 zarlink semiconductor inc. in tag based vlan mode bit [5:3]: ? fixed transmit priority. used when bit[7] = 1 (default 0) ? 000 transmit prio rity level 0 (lowest) ? 001 transmit priority level 1 ? 010 transmit priority level 2 ? 011 transmit priority level 3 ? 100 transmit priority level 4 ? 101 transmit priority level 5 ? 110 transmit priority level 6 ? 111 transmit priori ty level 7 (highest) bit [6]: ? fixed discard priority (default 0) ? 0 ? discard priority level 0 (lowest) ? 1 ? discard priority level 7(highest) bit [7]: ? enable fix priority (default 0) ? 0 disable fix priority. all frames are analyzed. transmit priority and drop priority are based on vlan ta g o r to s . ? 1 transmit priority and discard priority are based on values programmed in bit [6:3] bit [1]: ? ingress filter enable (default 1) ? 0 disable ? ingress filter. packets with vlan not belonging to source port are forwarded if destination port belongs to the vlan. symmetric vlan. ? 1 enable ? packets are discarded when source port is not a vlan member. asymmetric vlan. bit [2]: ? force untagged out (default 1). ? 0 disable ? 1 force untagged output. all packets transmitted from this port are untagged. this register is used when this port is connected to legacy equipment that does not support vlan tagging. bit [5:3]: ? fixed transmit priority (default 0) used when bit [7] = 1 ? 000 transmit priority level 0 (lowest) ? 001 transmit priority level 1 ? 010 transmit priority level 2 ? 011 transmit priority level 3 ? 100 transmit priority level 4 ? 101 transmit priority level 5 ? 110 transmit priority level 6 ? 111 transmit priori ty level 7 (highest) bit [6]: ? fixed discard priority (default 0) used when bit [7] = 1 ? 0 - discard priority level 0 (lowest) ? 1 discard priority level 1 (highest) bit [7]: ? enable fix priority (default 0) ? 0 disable fix priority. all frames are analyzed. transmit priority and drop priority are based on vlan tag or tos. ? 1 transmit priority and discard priority are based on values programmed in bit [6:3]
mvtx2802 data sheet 58 zarlink semiconductor inc. 11.5 port vlan map pvmap00_0,1,3 i 2 c address h14,15,17; cpu address:h102,103,105) pvmap01_0,1,3 i 2 c address h18,19,1b; cpu address:h106,107,109) pvmap02_0,1,3 i 2 c address h1c,1d,1f; cpu address:h10a, 10b,10d) pvmap03_0,1,3 i 2 c address h20,21,23; cpu address:h10e, 10f,111) pvmap08_0,1,3 i 2 c address h34,35,37; cpu address:h122, 123, 125) (cpu port) 11.5.1 pvmode ?i 2 c address: h038, cpu address:h126 ? accessed by cpu, serial interface (r/w) 11.6 group 2 address 11.6.1 port trunking group 11.6.1.1 trunk0 ? trunk gro up 0 member (managed mode only) ? cpu address:h200 ? accessed by cpu, serial interface (r/w) ? bit [3:0] port3-0 bit map of trunk 0. ( default 00 ) trunk0 provides a bitmap for tr unk0 membership. example: to trunk ports 0 and 2 in trunk group 0, bits 0 and 2 of trunk0 must be set to 1. all others mu st be cleared to ?0? to indicate that they are not members of the trunk 0. 76 5 43 1 0 ro mp bpdu dm reserved vmod bit [0]: ? vlan mode (vlan_enable) (default = 0) ? 1: tag based vlan mode ? 0: port based vlan mode bit [4]: ? disable mac address 0 ? 0: mac address 0 is not leaned. ? 1: mac address 0 is leaned. bit [5]: ? force bpdu as multicast frame ( default 0 ) ?1: enable. ? 0: disable. bpdu packet is forwarded to cpu. bit [6]: ? mac/port ? 0: single mac address per system ? 1: single mac address per port bit [7]: ? routing option (force frame as switched frame) ? 1: routing frame to cpu is independent of ingress port spanning tree state ? 0: routing frame to cpu is dependent of ingress port spanning tree state
mvtx2802 data sheet 59 zarlink semiconductor inc. 11.6.1.2 trunk1 ? trunk gro up 1 member (managed mode only) ? cpu address:h201 ? accessed by cpu, serial interface (r/w) ? bit [3:0] port3-0 bit map of trunk 1. ( default 00 ) 11.6.1.3 trunk2? t runk group 2 m ember (m anaged m ode o nly ) ? cpu address:h202 ? accessed by cpu, serial interface (r/w) ? bit [3:0] port3-0 bit map of trunk 2. ( default 00 ) 11.6.1.4 trunk3? t runk group 3 m ember (m anaged m ode o nly ) ? cpu address:h203 ? accessed by cpu, serial interface (r/w) ? bit [3:0] port3-0 bit map of trunk 3. ( default 00 ) 11.6.1.5 trunk_hash_ mode ? trunk hash mode ? cpu address:h206 ? accessed by cpu, serial interface (r/w) hash select. the hash selected is valid for trunk 0, 1, 2 and 3. 11.6.1.6 trunk0_mode ? tr unk group 0 mode (unmanaged mode) ?i 2 c address: h039, cpu address:h207 ? accessed by serial interface and i 2 c (r/w) ? port selection in unmanaged mode. trunk group 0 and trunk group 1 are enable accordingly to bits [1:0] when input pin p_d[9] = 0 (external pull down). 7210 hash sel bit [1:0]: ? (default 2?b00) ? 00 ? use source and destination mac address for hashing. ? 01 ? use source mac address for hashing. ? 10 ? use destination mac address for hashing. ? 11 ? not used. 7210 port sel
mvtx2802 data sheet 60 zarlink semiconductor inc. trunk hash ? trunk group 0 achieve load balance by tr unk0_hash0 to 5. (only in managed mode) ? trunk group 1 achieve load balance by tr unk1_hash0 to 5. (only in managed mode) ? trunk group 2 achieve load balance by tr unk2_hash0 to 5. (only in managed mode) ? trunk group 3 achieve load balance by tr unk3_hash0 to 5. (only in managed mode) 11.6.1.7 trunk0_hash0 ? trunk group 0 hash result 0,1,2 dest ination port number ? cpu address:h208 ? accessed by cpu, serial interface (r/w) 11.6.1.8 trunk0_hash1 ? trunk group 0 hash result 2,3,4,5 de stination port number ? cpu address:h209 ? accessed by cpu, serial interface (r/w) 11.6.1.9 trunk0_hash2 ? t runk group 0 hash result 5,6,7 destination port number ? cpu address:h20a ? accessed by cpu, serial interface (r/w) 11.6.1.10 trunk0_hash3 ? trunk group 0 hash result 8, 9,10 destination port number ? cpu address:h20b ? accessed by cpu, serial interface (r/w) bit [1:0]: ? port member selection for trunk 0 and 1 in unmanaged mode (default 2?b00) ? 00 ? only trunk group 0 is enable. port 0 and 1 are used for trunk group0 ? 01 ? only trunk group 0 is enable. port 0,1 and 2 are used for trunk group0 ? 10 ? only trunk group 0 is enable. port 0,1,2 and 3 are used for trunk group0 ? 11 ? trunk group 0 and 1 are enable. port 0, 1 are used for trunk group0, and port 2 and 3 are used for trunk group1 bit [2:0]: ? hash result 0 destination port number[2:0] (default 000) bit [5:3] ? hash result 1 destination port number[2:0] (default 001) bit [7:6] ? hash result 2 destination port number[1:0] (default 00) bit [0]: ? hash result 2 destination port number[2] (default 0) bit [3:1] ? hash result 3 destination port number[2:0] (default 001) bit [6:4] ? hash result 4 destination port number[2:0] (default 000) bit [7] ? hash result 5 destination port number[0] (default 1) bit [1:0]: ? hash result 5 destination port number[2:1] (default 00) bit [4:2] ? hash result 6 destination port number[2:0] (default 000) bit [7:5] ? hash result 7 destination port number[2:0] (default 001)
mvtx2802 data sheet 61 zarlink semiconductor inc. 11.6.1.11 trunk0_hash4 ? trunk group 0 h ash result 10,11,12,13 destination port number ? cpu address:h20c ? accessed by cpu, serial interface (r/w) 11.6.1.12 trunk0_hash5 ? trunk group 0 h ash result 13,14, 15 destination port number ? cpu address:h20d ? accessed by cpu, serial interface (r/w) 11.6.1.13 trunk1_hash0 ? t runk group 1 hash result 0, 1, 2 destination port number ? cpu address:h20f ? accessed by cpu, serial interface (r/w) 11.6.1.14 trunk1_hash1 ? t runk group 1 hash result 2, 3, 4, 5 destination port number ? cpu address:h210 ? accessed by cpu, serial interface (r/w) bit [2:0]: ? hash result 8 destination port number[2:0] (default 000) bit [5:3] ? hash result 9 destination port number[2:0] (default 001) bit [7:6] ? hash result 10 destination port number[1:0] (default 00) bit [0]: ? hash result 10 destination port number[2] (default 0) bit [3:1] ? hash result 11 destination port number[2:0] (default 001) bit [6:4] ? hash result 12 destination port number[2:0] (default (000) bit [7] ? hash result 13 destination port number[2:0] (default (1) bit [1:0]: ? hash result 13 destination port number[2:1] (default 00) bit [4:2] ? hash result 14 destination port number[2:0] (default 000) bit [7:5] ? hash result 15 destination port number[2:0] (default 001) bit [2:0]: ? hash result 0 destination port number[2:0] (default 000) bit [5:3] ? hash result 1 destination port number[2:0] (default 001) bit [7:6] ? hash result 2 destination port number[1:0] (default 00) bit [0]: ? hash result 2 destination port number[2] (default 0) bit [3:1] ? hash result 3 destination port number[2:0] (default 001) bit [6:4] ? hash result 4 destination port number[2:0] (default 000) bit [7] ? hash result 5 destination port number[0] (default 1)
mvtx2802 data sheet 62 zarlink semiconductor inc. 11.6.1.15 trunk1_hash2 ? trunk group 1 h ash result 5, 6, 7 de stination port number ? cpu address:h211 ? accessed by cpu, serial interface (r/w) 11.6.1.16 trunk1_hash3 ? trunk group 1 h ash result 8, 9, 10 de stination port number ? cpu address:h212 ? accessed by cpu, serial interface (r/w) 11.6.1.17 trunk1_hash4? tr unk group 1 hash result 11, 12 , 13 destination port number ? cpu address:h213 ? accessed by cpu, serial interface (r/w) 11.6.1.18 trunk1_hash5 ? trunk group 1 h ash result 13, 14, 15 de stination port number ? cpu address:h214 ? accessed by cpu, serial interface (r/w) 11.6.1.19 trunk2_hash0 ? trunk group 2 hash result 0, 1, 2 dest ination port number ? cpu address:h215 ? accessed by cpu, serial interface (r/w) bit [1:0]: ? hash result 5 destination port number[2:1] (default 00) bit [4:2] ? hash result 6 destination port number[2:0] (default 000) bit [7:5] ? hash result 7 destination port number[2:0] (default 001) bit [2:0]: ? hash result 8 destination port number[2:0] (default 000) bit [5:3] ? hash result 9 destination port number[2:0] (default 001) bit [7:6] ? hash result 10 destination port number[1:0] (default 00) bit [0]: ? hash result 10 destination port number[2] (default 0) bit [3:1] ? hash result 11 destination port number[2:0] (default 001) bit [6:4] ? hash result 12 destination port number[2:0] (default (000) bit [7] ? hash result 13 destination port number[0] (default (1) bit [1:0]: ? hash result 13 destination port number[2:1] (default 00) bit [4:2] ? hash result 14 destination port number[2:0] (default 000) bit [7:5] ? hash result 15 destination port number[2:0] (default 001) bit [2:0]: ? hash result 0 destination port number[2:0] (default 100) bit [5:3] ? hash result 1 destination port number[2:0] (default 101) bit [7:6] ? ash result 2 destination port number[1:0] (default 00)
mvtx2802 data sheet 63 zarlink semiconductor inc. 11.6.1.20 trunk2_hash1 ? tr unk group 2 hash result 2, 3, 4, 5 destination port number ? cpu address:h216 ? accessed by cpu, serial interface (r/w) 11.6.1.21 trunk2_hash2 ? trunk group 2 hash result 5, 6, 7 dest ination port number ? cpu address:h217 ? accessed by cpu, serial interface (r/w) 11.6.1.22 trunk2_hash3 ? trunk group 2 h ash result 8, 9, 10 de stination port number ? cpu address:h218 ? accessed by cpu, serial interface (r/w) 11.6.1.23 trunk2_hash4 ? trunk group 2 hash result 10, 11, 12, 13 destination port number ? cpu address:h219 ? accessed by cpu, serial interface (r/w) bit [0]: ? hash result 2 destination port number[2] (default 1) bit [3:1] ? hash result 3 destination port number[2:0] (default 101) bit [6:4] ? hash result 4 destination port number[2:0] (default 100) bit [7] ? hash result 5 destination port number[0] (default 1) bit [1:0]: ? hash result 5 destination port number[2:1] (default 10) bit [4:2] ? hash result 6 destination port number[2:0] (default 100) bit [7:5] ? hash result 7 destination port number[2:0] (default 101) bit [2:0]: ? hash result 8 destination port number[2:0] (default 000) bit [5:3] ? hash result 9 destination port number[2:0] (default 001) bit [7:6] ? hash result 10 destination port number[1:0] (default 00) bit [0]: ? hash result 10 destination port number[2] (default 1) bit [3:1] ? hash result 11 destination port number[2:0] (default 101) bit [6:4] ? hash result 12 destination port number[2:0] (default 1000) bit [7] ? hash result 13 destination port number[2:0] (default (1)
mvtx2802 data sheet 64 zarlink semiconductor inc. 11.6.1.24 trunk2_hash5 ? trunk group 2 h ash result 13, 14, 15 de stination port number ? cpu address:h21a ? accessed by cpu, serial interface (r/w) 11.6.1.25 trunk3_hash0 ? trunk group 3 hash result 0, 1, 2 dest ination port number ? cpu address:h21b ? accessed by cpu, serial interface (r/w) 11.6.1.26 trunk3_hash1 ? tr unk group 3 hash result 2, 3, 4, 5 destination port number ? cpu address:h21c ? accessed by cpu, serial interface (r/w) 11.6.1.27 trunk3_hash2 ? trunk group 3 hash result 5, 6, 7 dest ination port number ? cpu address:h21d ? accessed by cpu, serial interface (r/w) 11.6.1.28 trunk3_hash3 ? trunk group 3 h ash result 8, 9, 10 de stination port number ? cpu address:h21e ? accessed by cpu, serial interface (r/w) bit [1:0]: ? hash result 13 destination port number[2:1] (default 10) bit [4:2] ? hash result 14 destination port number[2:0] (default 100) bit [7:5] ? hash result 15 destination port number[2:0] (default 101) bit [2:0]: ? hash result 0 destination port number[2:0] (default 100) bit [5:3] ? hash result 1 destination port number[2:0] (default 101) bit [7:6] ? hash result 2 destination port number[1:0] (default 00) bit [0]: ? hash result 2 destination port number[2] (default 1) bit [3:1] ? hash result 3 destination port number[2:0] (default 101) bit [6:4] ? hash result 4 destination port number[2:0] (default 100) bit [7] ? hash result 5 destination port number[0] (default 1) bit [1:0]: ? hash result 5 destination port number[2:1] (default 10) bit [4:2] ? hash result 6 destination port number[2:0] (default 100) bit [7:5] ? hash result 7 destination port number[2:0] (default 101) bit [2:0]: ? hash result 8 destination port number[2:0] (default 100) bit [5:3] ? hash result 9 destination port number[2:0] (default 101) bit [7:6] ? hash result 10 destination port number[1:0] (default 00)
mvtx2802 data sheet 65 zarlink semiconductor inc. 11.6.1.29 trunk3_hash4 ? trunk group 3 hash result 10, 11, 12, 13 destination port number ? cpu address:h21f ? accessed by cpu, serial interface (r/w) 11.6.1.30 trunk3_hash5 ? trunk group 3 h ash result 13, 14, 15 de stination port number ? cpu address:h220 ? accessed by cpu, serial interface (r/w) 11.6.2 multicast hash registers multicast hash registers are used to distribute multicas t traffic. 16 + 2 registers are used to form a 16-entry array; each entry has 9 bits, with each bit represent ing one port. any port not belonging to a trunk group should be programmed with 1. ports belonging to the same trunk group should only have a single port set to ?1? per entry. the port set to ?1? is picked to transmi t the multicast frame when the hash value is met. bit [0]: ? hash result 10 destination port number[2] (default 1) bit [3:1] ? hash result 11 destination port number[2:0] (default 101) bit [6:4] ? hash result 12 destination port number[2:0] (default (100) bit [7] ? hash result 13 destination port number[2:0] (default (1) bit [1:0]: ? hash result 13 destination port number[2:1] (default 10) bit [4:2] ? hash result 14 destination port number[2:0] (default 100) bit [7:5] ? hash result 15 destination port number[2:0] (default 101) bit 876543210 hash result = 0 hash result = 1 hash result = 2 ? hash result = 13 hash result = 14 hash result = 15 cpu port nu nu nu nu port 3 p ort 2 port 1 port 0
mvtx2802 data sheet 66 zarlink semiconductor inc. 11.6.2.1 multicast_hash00 ? multicast hash result0 mask byte [7:0] ? cpu address:h221 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.2 multicast_hash01 ? multicast hash result1 mask byte [7:0] ? cpu address:h222 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.3 multicast_hash02 ? multicast hash result2 mask byte [7:0] ? cpu address:h223 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.4 multicast_hash03 ? multicast hash result3 mask byte [7:0] ? cpu address:h224 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.5 multicast_hash04 ? multicast hash result4 mask byte [7:0] ? cpu address:h225 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.6 multicast_hash05 ? multicast hash result5 mask byte [7:0] ? cpu address:h226 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.7 multicast_hash06 ? multicast hash result6 mask byte [7:0] ? cpu address:h227 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.8 multicast_hash07 ? multicast hash result7 mask byte [7:0] ? cpu address:h228 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff)
mvtx2802 data sheet 67 zarlink semiconductor inc. 11.6.2.9 multicast_hash08 ? multicast hash result8 mask byte [7:0] ? cpu address:h229 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.10 multicast_hash09 ? multicast hash result9 mask byte [7:0] ? cpu address:h22a ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.11 multicast_hash10 ? multicast hash result10 mask byte [7:0] ? cpu address:h22b ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.12 multicast_hash11 ? multicast hash result11 mask byte [7:0] ? cpu address:h22c ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.13 multicast_hash12 ? multicast hash result12 mask byte [7:0] ? cpu address:h22d ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.14 multicast_hash13 ? multicast hash result13 mask byte [7:0] ? cpu address:h22e ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.15 multicast_hash14 ? multicast hash result14 mask byte [7:0] ? cpu address:h22f ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.16 m ulticast _hash15 ? m ulticast hash result 15 mask byte [7:0] ? cpu address:h230 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff)
mvtx2802 data sheet 68 zarlink semiconductor inc. 11.6.2.17 multicast_hashml ? multicast hash bit[8] for result7-0 ? cpu address:h231 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.6.2.18 multicast_hashml ? multicast hash bit[8] for result 15-8 ? cpu address:h232 ? accessed by cpu, serial interface (r/w) ? bit [7:0] (default ff) 11.7 group 3 address 11.7.1 cpu port configuration group ? mac5 to mac0 registers form the cpu address. when a packet with destination address equal to mac5[5:0] arrives, it is forwarded to the cpu. (mc bit) 11.7.1.1 mac0 ? cpu mac address byte 0 ? cpu address:h300 ? accessed by cpu ? bit [7:0] byte 0 of the cpu mac address. (default 8?00) 11.7.1.2 mac1 ? cpu mac address byte 1 ? cpu address:h301 ? accessed by cpu ? bit [7:0] byte 1 of the cpu mac address. (default 8?00) 11.7.1.3 mac2 ? cpu m ac address byte 2 ? cpu address:h302 ? accessed by cpu ? bit [7:0] byte 2 of the cpu mac address. (default 8?00) 11.7.1.4 mac3 ? cpu mac address byte 3 ? cpu address:h303 ? accessed by cpu ? bit [7:0] byte 3 of the cpu mac address. (default 8?00) 11.7.1.5 mac4 ? cpu mac address byte 4 ? cpu address:h304 ? accessed by cpu ? bit [7:0] byte 4 of the cpu mac address. (default 8?00) mac5 mac4 mac3 mac2 mac1 mac0
mvtx2802 data sheet 69 zarlink semiconductor inc. 11.7.1.6 mac5 ? cpu mac address byte 5 ? cpu address:h305 ? accessed by cpu bit [7:0] byte 5 of the cpu mac address. (default 8?00). these registers form the cpu mac address int_mask0 ? i nterrupt m ask 0 ? cpu address:h306 ? accessed by cpu, serial interface (r/w) ? mask off the interrupt source the cpu can dynamically mask the interruption when it is busy and doesn?t want to be interrupted 11.7.1.7 int_mask1 ? interrupt mask 1 ? cpu address:h307 ? accessed by cpu, serial interface (r/w) mark off the interrupt source bit [0]: ? cpu frame interrupt. cpu frame buffer has data for cpu to read (default 1?b1) bit [1]: ? control command frame 1 interrupt. control command frame buffer1 has data for cpu to read (default 1?b1) bit [2]: ? control command frame 2 interrupt. control command frame buffer2 has data for cpu to read (default 1?b1) bit [7:3]: ? reserved 1 ? mask the interrupt 0 ? unmask the interrupt (enable interrupt) bit [0]: ? from gigabit port 0 interrupt (default 1?b1) bit [1]: ? from gigabit port 1 interrupt (default 1?b1) bit [2]: ? from gigabit port 2 interrupt (default 1?b1) bit [3]: ? from gigabit port 3 interrupt (default 1?b1) bit [4]: ? from gigabit port 4 interrupt (default 1?b1) bit [5]: ? from gigabit port 5 interrupt (default 1?b1) bit [6]: ? from gigabit port 6 interrupt (default 1?b1) bit [7]: ? from gigabit port 7 interrupt (default 1?b1) ? 1 ? mask the interrupt ? 0 ? unmask the interrupt (enable interrupt)
mvtx2802 data sheet 70 zarlink semiconductor inc. 11.7.1.8 int_status0 ? masked interrupt status register0 ? cpu address:h30a ? access by cpu, serial interface (ro) ? indicate the source of the masked interrupt. 11.7.1.9 int_status1 ? masked interrupt status register1 ? (cpu address:h30b) ? access by cpu, serial interface (ro) ? indicate the source of the masked interrupt. 11.7.1.10 intp_mask0 ? interrupt mask for mac port 0,1 ? cpu address:h30c ? accessed by cpu, serial interface (r/w) the cpu can dynamically mask the interruption when it is busy and doesn?t want to be interrupted 1 ? mask the interrupt 0 ? unmask the interrupt (enable interrupt) bit[0]: port 0 statistic counter wrap around interrupt mask. an interrupt is generated when a statistic counter gets to its maximum value and wraps around. refer to hardware statistic counter for interrupt sources. (default 1?b1) bit [1]: port 0 link change mask. (default 1?b1) bit [0]: ? cpu frame interrupt. bit [1] ? control command frame 1 interrupt. bit [2] ? control command frame 2 interrupt. bit [3] ? from any of the gigabit port interrupt. bit [7:4] ? reserved. bit [0]: ? from gigabit port 0 interrupt bit [1]: ? from gigabit port 1 interrupt bit [2]: ? from gigabit port 2 interrupt bit [3]: ? from gigabit port 3 interrupt bit [4]: nu bit [5]: nu bit [6]: nu bit [7]: nu 76543210 p1 p0
mvtx2802 data sheet 71 zarlink semiconductor inc. bit [4]: port 1 statistic counter wrap around interrupt mask. (default 1?b1) bit [5]: port 1 link change mask. (default 1?b1) 11.7.1.11 intp_mask1 ? interrupt mask for mac port 2,3 ? cpu address:h30d ? accessed by cpu, serial interface (r/w) 11.7.2 rqs ? receive queue select ? cpu address:h310 ? accessed by cpu, serial interface (rw) ? this register selects which receive queue is enable to send data to the cpu. bit[0]: select queue 0. if set to one, this queue may be scheduled to cpu port. if set to zero, this queue will be blocked. if multiple queues are selected, a strict priority will be applied. q3> q2> q1> q0. same applies to bits [3:1]. see qos application note for more information. bit[1]: select queue 1 bit[2]: select queue 2 bit[3]: select queue 3 note : strip priority applies between differ ent selected queues (q3>q2>q1>q0) bit[4]: enable flush queue 0 bit[5]: enable flush queue 1 bit[6]: enable flush queue 2 bit[7]: enable flush queue 3 when flush (drop frames) is enable, it starts when queu e is too long or entry is too old. a queue is too long when it reaches wred thresholds. queue 0 is not s ubject to early drop. packets in queue 0 are dropped only when the queue is too old. an entry is too old when it is older than the time programmed in the register tx_age [5:0]. cpu can dynamically program this register reading register rqss [7:4]. 7 6543210 p3 p2 bit [0]: ? port 2 was mask (default 1?b1) bit [1]: ? port 2 link change mask (default 1?b1) bit [4]: ? port 3 was mask (default 1?b1) bit [5]: ? port 3 link change mask (default 1?b1) 743 0 fq3 fq2 fq1 fq0 sq3 sq2 sq1 sq0
mvtx2802 data sheet 72 zarlink semiconductor inc. 11.7.3 rqss ? receive queue status ? cpu address:h311 ? accessed by cpu, serial interface (ro) cpu queue status: bit[3:0]: queue 3 to 0 not empty bit[4]: head of line entry for queue 3 to 0 is va lid for too long. cpu queue 0 has no wred threshold bit[7:5]: head of line entry for queue 3 to 0 is valid for too long or queue length is longer than wred threshold 11.7.4 tx_age ? tx queue aging timer ?i 2 c address: h03b;cpu address:h312 ? accessed by cpu, serial interface (ro) bit[4:0]: unit of 100ms (default 8)disable transmission queue aging if value is zero. bit[5]must be set to ?0? bit[7:6]: reserved 11.8 group 4 address 11.8.1 search engine group 11.8.1.1 agetime_low ? mac address aging time low ?i 2 c address h03c; cpu address:h400 ? accessed by cpu, serial interface and i 2 c (r/w) ? bit [7:0] low byte of the mac address aging timer. (default 2c) ? the 2800 removes the mac address from the data base and sends a delete mac address control command to the cpu. mac address aging is enable/disable by boot strap t_d[9]. 11.8.1.2 agetime_high ?mac address aging time high ?i 2 c address h03d; cpu address h401 ? accessed by cpu, serial interface and i 2 c (r/w) ? bit [7:0]: high byte of the mac address aging timer. (default 00) aging time is based on the following equation: {agetime_high, agetime_low} x (# of mac entries x100sec) note: the number of entries= 66k when t_d[5] is pull do wn (sram memory size = 512k) and 34k when t_d[5] is pull up (sram memory size = 256k). 743 0 lq3 lq2 lq1 lq0 neq3 neq2 neq1 neq0 765 4 0 tx queue agent
mvtx2802 data sheet 73 zarlink semiconductor inc. 11.8.1.3 v_agetime ? vlan to port aging time ? cpu address h402 ? accessed by cpu (r/w) ? bit [7:0] - 2msec/unit. (default ff) 11.8.1.4 se_opmode ? search engine operation mode ? cpu address:h403 ? accessed by cpu (r/w) 7 6 54 3 2 10 sl dms arp dra da drd drn fl bit [0]: ? 1 ? enable fast learning mode. in this mode, the hardware learns all the new mac addresses at highest rate, and reports to the cpu while the hardware scans the mac database. when the cpu report queue is full, the mac address is learned and marked as ?not reported?. when the hardware scans the database and finds a mac address marked as ?not reported? it tries to report it to the cpu. the scan rate must be set. scan contro l register sets the scan rate. (default 0) ? 0 ? search engine learns a new mac address and sends a message to the cpu report queue. if queue is full, the learning is temporarily halted. bit [1]: ? 1 ? disable report new vlan port association (default 0) ? 0 ? report new vlan port association bit [2]: ? report control ? 1 ? disable report mac address deletion (default 0) ? 0 ? report mac address deletion (mac address is deleted from mct after aging time) bit [3]: ? delete control ? 1 ? disable aging logic from removing mac during aging (default 0) ? 0 ? mac address entry is removed when it is old enough to be aged. ? however, a report is still sent to th e cpu in both case s, when bit[2] = 0 bit [4]: ? 1 ? disable report aging vlan port association (default 0) ? 0 ? enable report aging vlan. vlan is not removed by hardware. the cpu needs to remove the vlan ?port association. bit [5]: ? 1 - report arp packet to cpu (default 0) bit [6]: ? disable mct speedup aging (default 0) ? 1 ? disable speedup aging when mct resource is low. ? 0 ? enable speedup aging when mct resource is low. bit [7]: ? slow learning (default 0) ? 1? enable slow learning. learning is temporary disabled when search demand is high ? 0 ? learning is performed independent of search demand
mvtx2802 data sheet 74 zarlink semiconductor inc. 11.8.1.5 scan ? scan control register ? cpu address h404 ? accessed by cpu (r/w) scan is used when fast learning is enabled (se_op mode bit 0). it is used for setting up the report rate for newly learned mac addresses to the cpu. examples: r= 0, ratio = 0: all aging rounds are used for aging r= 0, ratio = 1: aging and scanning in every other aging round r= 1, ratio = 7: in eight rounds, one is used for scanning and seven is used for aging r= 0, ratio = 7: in eight rounds, one is used for aging and seven is used for scanning 11.9 group 5 address 11.9.1 buffer control/qos group 11.9.1.1 fcbat ? fcb aging timer ?i 2 c address h03e; cpu address:h500 11.9.1.2 qosc ? qos control ?i 2 c address h03f; cpu address:h501 ? accessed by cpu, serial interface and i 2 c (r/w) 76 0 rratio bit [6:0]: ? ratio between database scanning and aging round (default 00) bit [7]: ? reverse the ratio between scanning round and aging round (default 0) 70 fcbat bit [7:0]: ? fcb aging time. unit of 1ms. ( default ff ) ? fcbat define the aging time out interval of fcb handle 76 543 10 to s - d to s - p c p u q v f 1 c f b
mvtx2802 data sheet 75 zarlink semiconductor inc. 11.9.1.3 fcr ? flooding control register ?i 2 c address h040; cpu address:h502 ? accessed by cpu, serial interface and i 2 c (r/w) bit [0]: ? qos frame lost is ok. priority will be avai lable for flow control enabled source only when this bit is set (default 0) bit [4]: ? per vlan multicast flow control (default 0) ? 0 ? disable ?1 - enable bit [5]: ? cpu multicast queues size ? 0 = 16 entries ? 1 = 160 entries bit [6]: ? select tos bits for priority (default 0) ? 0 ? use tos [4:2] bits to map the transmit priority ? 1 ? use tos [5:3] bits to map the transmit priority bit [7]: ? select tos bits for drop (default 0) ? 0 ? use tos [4:2] bits to map the drop priority ? 1 ? use tos [5:3] bits to map the drop priority 76 43 0 tos timebase u2mr bit [3:0]: bit [6:4]: bit [7]: ? u2mr: unicast to multicast rate. units in terms of time base defined in bits [6:4]. this is used to limit the amount of flooding traffic. the va lue in u2mr specifies how many packets are allowed to flood within the time specified by bi t [6:4]. to disable this function, program u2mr to 0. ( default = 4?h8 ) ? timebase: (default = 000) ? 000 = 10us ? 001 = 20us ? 010 = 40us ? 011 = 80us ? 100 = 160us ? 101 = 320us ? 110 = 640us ? 111 = 10us , same as 000. ? select vlan tag or tos field (ip packets) to be preferentially picked to map transmit priority and drop priority ( default = 0 ). ? 0 ? select vlan tag priority field over tos field ? 1 ? select tos field over vlan tag priority field
mvtx2802 data sheet 76 zarlink semiconductor inc. 11.9.1.4 avpml ? vlan priority map ?i 2 c address h041; cpu address:h503 ? accessed by cpu, serial interface and i 2 c (r/w) registers avpml, avpmm, and avpmh allow the eight vlan priorities to map into ei ght internal level transmit priorities. under the internal transmit priority, ?seven? is the highest priority where as ?zero? is the lowest. this feature allows the user the fl exibility of redefining the vlan priority field. for ex ample, programming a value of 7 into bit 2:0 of the avpml register would map packet vlan pr iority) into internal transmit priority 7. the new priority is used only inside the 2802. when the packet goes out it carries the original priority. 11.9.1.5 avpmm ? vlan priority map ?i 2 c address h042, cpu address:h504 ? accessed by cpu, serial interface and i 2 c (r/w) map vlan priority into eight level transmit priorities: 11.9.1.6 avpmh ? vlan priority map ?i 2 c address h043, cpu address:h505 ? accessed by cpu, serial interface and i 2 c (r/w) 765 32 0 vp2 vp1 vp0 bit [2:0]: mapped priority of 0 (default 000) bit [5:3]: mapped priority of 1 (default 001) bit [7:6]: mapped priority of 2 (default 10) 7 6431 0 vp5 vp4 vp3 vp2 bit [0]: mapped priority of 2 (default 0) bit [3:1]: mapped priority of 3 (default 011) bit [6:4]: mapped priority of 4 (default 100) bit [7]: mapped priority of 5 (default 1) 754 21 0 vp7 vp6 vp5
mvtx2802 data sheet 77 zarlink semiconductor inc. map vlan priority into eight level transmit priorities: 11.9.1.7 tospml ? tos priority map ?i 2 c address h044, cpu address:h506 ? accessed by cpu, serial interface and i 2 c (r/w) map tos field in ip packet into four level transmit priorities 11.9.1.8 tospmm ? tos p riority m ap ?i 2 c address h045, cpu address:h507 ? accessed by cpu, serial interface and i 2 c (r/w) map tos field in ip packet into four level transmit priorities 11.9.1.9 tospmh ? tos p riority m ap ?i 2 c address h046, cpu address:h508 ? accessed by cpu, serial interface and i 2 c (r/w) bit [1:0]: mapped priority of 5 (default 10) bit [4:2]: mapped priority of 6 (default 110) bit [7:5]: mapped priority of 7 (default 111) 765 32 0 tp2 tp1 tp0 bit [2:0]: mapped priority when tos is 0 (default 000) bit [5:3]: mapped priority when tos is 1 (default 001) bit [7:6]: mapped priority when tos is 2 (default 10) 7 6431 0 tp5 tp4 tp3 tp2 bit [0]: mapped priority when tos is 2 (default 0) bit [3:1]: mapped priority when tos is 3 (default 011) bit [6:4]: mapped priority when tos is 4 (default 100) bit [7]: mapped priority when tos is 5 (default 1) 754 21 0 tp7 tp6 tp5
mvtx2802 data sheet 78 zarlink semiconductor inc. map tos field in ip packet into four level transmit priorities: 11.9.1.10 avdm ? vlan discard map ?i 2 c address h047, cpu address:h509 ? accessed by cpu, serial interface and i 2 c (r/w) map vlan priority into frame discard when low priority buffer usage is above threshold. frames with high discard (drop) priority will be discarded (dropped) before frames with low drop priority. ? 0 ? low discard priority ? 1 ? high discard priority 11.9.1.11 tosdml ? tos discard map ?i 2 c address h048, cpu address:h50a ? accessed by cpu, serial interface and i 2 c (r/w) map tos into frame discard when low priority buffer usage is above threshold ? bit [1:0]: ? mapped priority when tos is 5 (default 01) ? bit [4:2]: ? mapped priority when tos is 6 (default 110) ? bit [7:5]: ? mapped priority when tos is 7 (default 111) 76543210 fd7 fd6 fd5 fd4 fd3 fd2 fd1 fd0 bit [0]: frame discard priority for frames with vlan transmit priority 0 (default 0) bit [1]: frame discard priority for frames with vlan transmit priority 1 (default 0) bit [2]: frame discard priority for frames with vlan transmit priority 2 (default 0) bit [3]: frame discard priority for frames with vlan transmit priority 3 (default 0) bit [4]: frame discard priority for frames with vlan transmit priority 4 (default 0) bit [5]: frame discard priority for frames with vlan transmit priority 5 (default 0) bit [6]: frame discard priority for frames with vlan transmit priority 6 (default 0) bit [7]: frame discard priority for frames with vlan transmit priority 7 (default 0) 76543210 fdt7 fdt6 fdt5 fdt4 fdt3 fdt2 fdt1 fdt0 bit [0]: frame discard priority for frames with tos transmit priority 0 (default 0) bit [1]: frame discard priority for frames with tos transmit priority 1 (default 0) bit [2]: frame discard priority for frames with tos transmit priority 2 (default 0) bit [3]: frame discard priority for frames with tos transmit priority 3 (default 0)
mvtx2802 data sheet 79 zarlink semiconductor inc. 11.9.2 bmrc - broadcast/multicast rate control ?i 2 c address h049, cpu address:h50b ? accessed by cpu, serial interface and i 2 c (r/w) this broadcast and multicast rate defines for each port the number of incoming packet allowed to be forwarded within a specified time. once the packet rate is reac hed, packets will be dropped. to turn off the rate limit, program the field to 0. 11.9.3 ucc ? unicast congestion control ?i 2 c address h04a, cpu address: h50c ? accessed by cpu, serial interface and i 2 c (r/w) 11.9.4 mcc ? multicast congestion control ?i 2 c address h0b7, cpu address: h50d ? accessed by cpu, serial interface and i 2 c (r/w) bit [4]: frame discard priority for frames with tos transmit priority 4 (default 0) bit [5]: frame discard priority for frames with tos transmit priority 5 (default 0) bit [6]: frame discard priority for frames with tos transmit priority 6 (default 0) bit [7]: frame discard priority for frames with tos transmit priority 7 (default 0) 7430 broadcast rate multicast rate bit [3:0]: multicast rate control number of multicast packets allowed within the time defined in bits 6 to 4 of the flooding control register (fcr). (default 0) . bit [7:4]: broadcast rate control number of broadcast packets allowed within the time defined in bits 6 to 4 of the flooding control register (fcr). (default 0) 70 unicast congest threshold bit [7:0]: number of frame count. us ed for best effort dropping at b% when destination port?s best effort queue reaches ucc threshold and shared pool is all in use. granularity 16 frame. (default: h07) 7543 0 fc reaction prd multica st congest threshold
mvtx2802 data sheet 80 zarlink semiconductor inc. 11.9.5 prg ? port reservation for giga ports ?i 2 c address h0b9, cpu address h50f ? accessed by cpu, serial interface and i 2 c (r/w) 11.9.6 fcb reservation 11.9.6.1 sfcb ? share fcb size ?i 2 c address h04e), cpu address h510 ? accessed by cpu, serial interface and i 2 c (r/w) bit [3:0]: in multiples of two. used for triggering mc flow control when destination port?s multicast best effort queue reaches mcc threshold. (default 5?h08) bit [4]: must be 0 bit [7:5]: flow control reaction period. ([ 7:5] *4 usec)+3 usec (default 3?h2). 74 30 buffer low thd per source buffer reservation bit [3:0]: per source buffer reservation. define the space in the fdb reserved for each port. expressed in multiples of 16 packets. for each packe t 1536 bytes are reserved in the memory. default: 4?ha for 4mb memory 4?h6 for 2mb memory 4?h3 for 1mb memory bits [7:4]: expressed in mu ltiples of 16 packets. threshold for dropping all best effort frames when destination port best effort queues reach ucc threshold and shared pool is all used and source port reservation is at or below t he prg[7:4] level. also the threshol d for initiating uc flow control. default: 4?h6 for 4mb memory 4?h2 for 2mb memory 4?h1 for 1mb memory 70 shared buffer size bits [7:0]: ? expressed in multiples of 8. buffer reservation for shared pool. (default 4g & 4m = 8?d62) (default 4g & 2m = 8?d20) (default 4g & 1m = 8'd08 (default 8g & 4m = 8?d150) (default 8g & 2m = 8?d55) (default 8g & 1m = 8'd25
mvtx2802 data sheet 81 zarlink semiconductor inc. 11.9.6.2 c2rs ? class 2 reserved size ?i 2 c address h04f, cpu address h511 ? accessed by cpu, serial interface and i 2 c (r/w) 11.9.6.3 c3rs ? class 3 reserved size ?i 2 c address h050, cpu address h512 ? accessed by cpu, serial interface and i 2 c (r/w) 11.9.6.4 c4rs ? class 4 reserved size ?i 2 c address h051, cpu address h513 ? accessed by cpu, serial interface and i 2 c (r/w) 11.9.6.5 c5rs ? class 5 reserved size ?i 2 c address h052; cpu address h514 ? accessed by cpu, serial interface and i 2 c (r/w) 70 class 2 fcb reservation bits [7:0]: ? buffer reservation for class 2 (third lowest priority). granularity 2. (default 8?h00) 70 class 3 fcb reservation bits [7:0]: ? buffer reservation for class 3. granularity 2. (default 8?h00) 70 class 4 fcb reservation bits [7:0]: ? buffer reservation for class 4. granularity 2. (default 8?h00) 70 class 5 fcb reservation bits [7:0]: ? buffer reservation for class 5. granularity 2. (default 8?h00)
mvtx2802 data sheet 82 zarlink semiconductor inc. 11.9.6.6 c6rs ? class 6 reserved size ?i 2 c address h053; cpu address h515 ? accessed by cpu, serial interface and i 2 c (r/w) 11.9.6.7 c7rs ? class 7 reserved size ?i 2 c address h054; cpu address h516 ? accessed by cpu, serial interface and i 2 c (r/w) 11.9.7 classes byte gigabit port 0 ? accessed by cpu; serial interface and i 2 c (r/w): 11.9.7.1 qosc00 ? byte_c2_g0 ?i 2 c address h055, cpu address h517 11.9.7.2 qosc01 ? byte_c3_g0 ?i 2 c address h056, cpu address h518 70 class 6 fcb reservation bits [7:0]: ? buffer reservation for class 6 (sec ond highest priority). granularity 2. (default 8?h00) 70 class 7 fcb reservation bits [7:0]: ? buffer reservation for class 7 (highe st priority). granularity 2. (default 8?h00) bits [7:0]: ? byte count threshold for c2 queue wred (default 8?h28) ? (1024byte/unit when delay bound is used) ? (1024byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c3 queue wred (default 8?h28) ? (512byte/unit when delay bound is used) ? (1024byte/unit when wfq is used)
mvtx2802 data sheet 83 zarlink semiconductor inc. 11.9.7.3 qosc02 ? byte_c4_g0 ?i 2 c address h057, cpu address h519 11.9.7.4 qosc03 ? byte_c5_g0 ?i 2 c address h058, cpu address h51a 11.9.7.5 qosc04 ? byte_c6_g0 ?i 2 c address h059, cpu address h51b 11.9.7.6 qosc05 ? byte_c7_g0 ?i 2 c address h05a, cpu address h51c qosc00 through qosc05 represent the values f-a in ta ble 3 for gigabit port 0. they are per-queue byte thresholds for weighted random early drop (wred). qosc 05 represents a, and qosc00 represents f. see qos application note for more information. 11.9.8 classes byte gigabit port 1 ? accessed by cpu; serial interface and i 2 c (r/w): 11.9.8.1 qosc06 ? byte_c2_g1 ?i 2 c address h05b, cpu address 5h1d bits [7:0]: ? byte count threshold for c4 queue wred (default 8?h28) ? (256byte/unit when delay bound is used) ? (1024byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c5 queue wred (default 8?h28) ? (128byte/unit when delay bound is used) ? (1024byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c6 queue wred (default 8?h50) ? (64byte/unit when delay bound is used) ? (1024byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c6 queue wred (default 8?h50) ? (64byte/unit when delay bound is used) ? (1024byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c2 queue wred (default 8?h28) ? (1024byte/unit when delay bound is used) ? (1024byte/unit when wfq is used)
mvtx2802 data sheet 84 zarlink semiconductor inc. 11.9.8.2 qosc07 ? byte_c3_g1 ?i 2 c address h05c, cpu address h51e 11.9.8.3 qosc08 ? byte_c4_g1 ?i 2 c address h05d, cpu address h51f 11.9.8.4 qosc09 ? byte_c5_g1 ?i 2 c address h05e, cpu address h520 11.9.8.5 qosc0a ? byte_c6_g1 ?i 2 c address h05f, cpu address h521 11.9.8.6 qosc0b ? byte_c7_g1 ?i 2 c address h060, cpu address h522 qosc06 through qosc0b represent the values f-a in table 3. they are per-queue byte thresholds for random early drop. qosc0b represents a, and qosc06 represents f. see qos application note for more information 11.9.9 classes byte gigabit port 2 ? accessed by cpu; serial interface and i 2 c (r/w): bits [7:0] ? byte count threshold for c3 queue wred (default 8?h28) ? (512 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c4 queue wred (default 8?h28) ? (256 byte/unit when delay bound is used) ? (1024byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c5 queue wred (default 8?h28) ? (128 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c6 queue wred (default 8?h50) ? (64 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c7 queue wred (default 8?h50) ? (64 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used)
mvtx2802 data sheet 85 zarlink semiconductor inc. 11.9.9.1 qosc0c ? byte_c2_g2 ?i 2 c address h061, cpu address h523 11.9.9.2 qosc0d ? byte_c3_g2 ?i 2 c address h062, cpu address h524 11.9.9.3 qosc0e ? byte_c4_g2 ?i 2 c address h063, cpu address h525 11.9.9.4 qosc0f ? byte_c5_g2 ?i 2 c address h064, cpu address h526 11.9.9.5 qosc10 ? byte_c6_g2 ?i 2 c address h065, cpu address h527 11.9.9.6 qosc11 ? byte_c7_g2 ?i 2 c address h066, cpu address h528 qosc0c through qosc11 represent the values f-a in table 3. they are per-queue byte thresholds for random early drop. qosc11 represents a, and qosc0c represent s f. see qos application note for more information bits [7:0]: ? byte count threshold for c2 queue wred (default 8?h28) ? (1024 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c3 queue wred (default 8?h28) ? (512 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c4 queue wred (default 8?h28) ? (256 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c5 queue wred (default 8?h28) ? (128 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c6 queue wred (default 8?h50) ? (64 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c7 queue wred (default 8?h50) ? (64 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used)
mvtx2802 data sheet 86 zarlink semiconductor inc. 11.9.10 classes byte gigabit port 3 ? accessed by cpu; serial interface and i 2 c (r/w): 11.9.10.1 qosc12 ? byte_c2_g3 ?i 2 c address h067, cpu address h529 11.9.10.2 qosc13 ? byte_c3_g3 ?i 2 c address h068, cpu address h52a 11.9.10.3 qosc14 ? byte_c4_g3 ?i 2 c address h069, cpu address h52b 11.9.10.4 qosc15 ? byte_c5_g3 ?i 2 c address h06a, cpu address h52c 11.9.10.5 qosc16 ? byte_c6_g3 ?i 2 c address h06b, cpu address h52d bits [7:0]: ? byte count threshold for c2 queue wred (default 8?h28) ? (1024 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c3 queue wred (default 8?h28) ? (512 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c4 queue wred (default 8?h28) ? (256 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c5 queue wred (default 8?h28) ? (128 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c6 queue wred (default 8?h50) ? (64 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used)
mvtx2802 data sheet 87 zarlink semiconductor inc. 11.9.10.6 qosc17 ? byte_c7_g3 ?i 2 c address h06c, cpu address h52e qosc12 through qosc17 represent the values f-a in ta ble 3. they are per-queue byte thresholds for random early drop. qosc17 represents a, and qosc12 represent s f. see qos application note for more information 11.9.11 classes byte limit cpu ? accessed by cpu; serial interface and i 2 c (r/w): 11.9.11.1 qosc30 ? byte_c01 ? cpu address h547 11.9.11.2 qosc31 ? byte_c02 ? cpu address h548 11.9.11.3 qosc32 ? byte_c03 ? cpu address h549 qosc30 through qosc32 represent the values c-a for cpu port. the values a-c are per-queue byte thresholds for random early drop. qosc32 represent s a, and qosc30 represents c. queue 0 does not have weighted random drop. see qos application note for more information. 11.9.12 classes wfq credit - port g0 ? accessed by cpu only 11.9.12.1 qosc33 ? credit_c0_g0 ? cpu address h54a bits [7:0]: ? byte count threshold for c7 queue wred (default 8?h50) ? (64 byte/unit when delay bound is used) ? (1024 byte/unit when wfq is used) bits [7:0]: ? byte count threshold for c1 queue (256byte/unit) bits [7:0]: ? byte count threshold for c2 queue (256byte/unit) bits [7:0]: ? byte count threshold for c3 queue (256byte/unit) bits [5:0]: ? w0 - credit register for wfq. (default 6?h04) bits [7:6]: ? priority type. define one of the four qos mode of operation for port 0 (default 2?00)
mvtx2802 data sheet 88 zarlink semiconductor inc. see table below: 11.9.12.2 qosc34 ? credit_c1_g0 ? cpu address h54b 11.9.12.3 qosc35 ? credit_c2_g0 cpu address h54c queue p7 p6 p5 p4 p3 p2 p1 p0 option 1 bit [7:6] = 2?b00 delay bound be option 2 bit [7:6] = 2?b01 sp delay bound be option 3 bit [7:6] = 2?b10 sp wfq option 4 bit [7:6] = 2?b11 wfq credit for wfq ? bit [5:0] w7w6w5w4w3w2w1w0 bits [7]: ? flow control allow during wfq scheme. (default 1?b1) ? 0 = not support qos when the source port flow control status is on. ? 1= always support qos) bits [6]: ? flow control be queue only. (default 1?b1) ? 0= do not send any frames if the xoff is on. ? 1= the p7-p2 frames can be sent even the xoff is on bits [5:0] ? w1 - credit register. (default 4?h04) fc_allow fc_be_only lost_ok egress- for dest fc_s tatus ingress- for src fc status 0 0 0 go to be queue if (src fc or des fc on) otherwise normal 0 0 1 go to be queue if (dest fc on) otherwise normal 1 0 0 (wfq only) go to be queue if (src fc on) otherwise bad 10 1(wfq only) always normal x 1 0 go to be queue if (src fc on) x 1 1 always normal bits [5:0] ? w2 - credit register. (default 4?h04) bits [7:6]: ? reserved
mvtx2802 data sheet 89 zarlink semiconductor inc. 11.9.12.4 qosc36 ? credit_c3_g0 ? cpu address h54d 11.9.12.5 qosc37 ? credit_c4_g0 ? cpu address h54e 11.9.12.6 qosc38 ? credit_c5_g0 ? cpu address h54f 11.9.12.7 qosc39? credit_c6_g0 ? cpu address h550 11.9.12.8 qosc3a? credit_c7_g0 ? cpu address h551 qosc33 through qosc3arepresents the set of wfq parame ters (see section 7.5) for gigabit port 0. the granularity of the numbers is 1, and their sum must be 64. qosc33 corresponds to w0, and qosc3a corresponds to w7. 11.9.13 classes wfq credit port g1 ? access by cpu only bits [5:0] ? w3 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w4 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w5 - credit register. (default 5?h8) bits [7:6]: ? reserved bits [5:0] ? w6 - credit register. (default 5?h8) bits [7:6]: ? reserved bits [5:0] ? w7 - credit register. (default 5?h10) bits [7:6]: ? reserved
mvtx2802 data sheet 90 zarlink semiconductor inc. 11.9.13.1 qosc3b ? credit_c0_g1 ? cpu address h552 see table below: 11.9.13.2 qosc3c ? credit_c1_g1 ? cpu address h54b bits [5:0]: ? w0 - credit register for wfq. (default 6?h04) bits [7:6]: ? priority type. define one of the four qos mode of operation for port 1 (default 2?00) queue p7p6p5p4p3p2p1p0 option 1 bit [7:6] = 2?b00 delay bound be option 2 bit [7:6] = 2?b01 sp delay bound be option 3 bit [7:6] = 2?b10 sp wfq option 4 bit [7:6] = 2?b11 wfq credit for wfq ? bit [5:0] w7 w6 w5 w4 w3 w2 w1 w0 bits [7]: ? flow control allow during wfq scheme. (default 1?b1) ? 0 = not support qos when the source port flow control status is on. ? 1= always support qos) bits [6]: ? flow control be queue only. (default 1?b1) ? 0= do not send any frames if the xoff is on. ? 1= the p7-p2 frames can be sent even the xoff is on bits [5:0] ? w1 - credit register. (default 4?h04) fc_allow fc_be_only lost_ok egress- for dest fc _status ingress- for src fc status 0 0 0 go to be queue if (src fc or des fc on) otherwise normal 0 0 1 go to be queue if (dest fc on) otherwise normal 1 0 0 (wfq only) go to be queue if (src fc on) otherwise bad 1 0 1 (wfq only) always normal x 1 0 go to be queue if (src fc on) x 1 1 always normal
mvtx2802 data sheet 91 zarlink semiconductor inc. 11.9.13.3 qosc3d ? credit_c2_g1 ? cpu address h553 11.9.13.4 qosc3e ? credit_c3_g1 ? cpu address h554 11.9.13.5 qosc3f ? credit_c4_g1 ? cpu address h555 11.9.13.6 qosc40 ? credit_c5_g1 ? cpu address h556 11.9.13.7 qosc41? credit_c6_g1 ? cpu address h557 11.9.13.8 qosc42? credit_c7_g1 ? cpu address h558 qosc3b through qosc42 represents the set of wfq para meters (see section 7.5) for gigabit port 1. the granularity of the numbers is 1, and their sum mu st be 64. qosc3b corresponds to w0, and qosc42 corresponds to w7 bits [5:0] ? w2 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w3 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w4 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w5 - credit register. (default 5?h8) bits [7:6]: ? reserved bits [5:0] ? w6 - credit register. (default 5?h8) bits [7:6]: ? reserved bits [5:0] ? w7 - credit register. (default 5?h10) bits [7:6]: ? reserved
mvtx2802 data sheet 92 zarlink semiconductor inc. 11.9.13.9 classes wfq credit port g2 ? access by cpu only 11.9.13.10 qosc43 ? credit_c0_g2 ? cpu address h55a see table below: 11.9.13.11 qosc44 ? credit_c1_g2 ? cpu address h55b bits [5:0]: ? w0 - credit register for wfq. (default 6?h04) bits [7:6]: ? priority type. define one of the four qos mode of operation for port 2 (default 2?00) queue p7p6p5p4p3p2p1p0 option 1 bit [7:6] = 2?b00 delay bound be option 2 bit [7:6] = 2?b01 sp delay bound be option 3 bit [7:6] = 2?b10 sp wfq option 4 bit [7:6] = 2?b11 wfq credit for wfq ? bit [5:0] w7w6w5w4w3w2w1w0 bits [7]: ? flow control allow during wfq scheme. (default 1?b1) ? 0 = not support qos when the source port flow control status is on. ? 1= always support qos) bits [6]: ? flow control be queue only. (default 1?b1) ? 0= do not send any frames if the xoff is on. ? 1= the p7-p2 frames can be sent even the xoff is on bits [5:0] ? w1 - credit register. (default 4?h04) fc_allow fc_be_only lost_ok egress- for dest fc _status ingress- for src fc status 0 0 0 go to be queue if (src fc or des fc on) otherwise normal 0 0 1 go to be queue if (dest fc on) otherwise normal 1 0 0 (wfq only) go to be queue if (src fc on) otherwise bad 10 1(wfq only) always normal x 1 0 go to be queue if (src fc on)
mvtx2802 data sheet 93 zarlink semiconductor inc. 11.9.13.12 qosc45 ? credit_c2_g2 ? cpu address h55c 11.9.13.13 qosc46 ? credit_c3_g2 ? cpu address h55d 11.9.13.14 qosc47 ? credit_c4_g2 ? cpu address h55e 11.9.13.15 qosc48 ? credit_c5_g2 ? cpu address h55f 11.9.13.16 qosc49? credit_c6_g2 ? cpu address h560 11.9.13.17 qosc4a? credit_c7_g2 ? cpu address h561 qosc43 through qosc4arepresents the set of wfq parame ters (see section 7.5) for gigabit port 2. the granularity of the numbers is 1, and their sum must be 64. qosc43 corresponds to w0, and qosc4a corresponds to w7. x 1 1 always normal bits [5:0] ? w2 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w3 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w4 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w5 - credit register. (default 5?h8) bits [7:6]: ? reserved bits [5:0] ? w6 - credit register. (default 5?h8) bits [7:6]: ? reserved bits [5:0] ? w7 - credit register. (default 5?h10) bits [7:6]: ? reserved
mvtx2802 data sheet 94 zarlink semiconductor inc. 11.9.14 classes wfq credit port g3 ? access by cpu only 11.9.14.1 qosc4b ? credit_c0_g3 ? cpu address h562 see table below: 11.9.14.2 qosc4 ? credit_c1_g3 ? cpu address h563 bits [5:0]: ? w0 - credit register for wfq. (default 6?h04) bits [7:6]: ? priority type. define one of the four qos mode of operation for port 3 (default 2?00) queue p7p6p5p4p3p2p1p0 option 1 bit [7:6] = 2?b00 delay bound be option 2 bit [7:6] = 2?b01 sp delay bound be option 3 bit [7:6] = 2?b10 sp wfq option 4 bit [7:6] = 2?b11 wfq credit for wfq ? bit [5:0] w7 w6 w5 w4 w3 w2 w1 w0 bits [7]: ? flow control allow during wfq scheme. (default 1?b1) ? 0 = not support qos when the source port flow control status is on. ? 1= always support qos) bits [6]: ? flow control be queue only. (default 1?b1) ? 0= do not send any frames if the xoff is on. ? 1= the p7-p2 frames can be sent even the xoff is on bits [5:0] ? w1 - credit register. (default 4?h04) fc_allow fc_be_only lost_ok egress- for dest fc_s tatus ingress- for src fc status 0 0 0 go to be queue if (src fc or des fc on) otherwise normal 0 0 1 go to be queue if (dest fc on) otherwise normal 1 0 0 (wfq only) go to be queue if (src fc on) otherwise bad 1 0 1 (wfq only) always normal x 1 0 go to be queue if (src fc on) x 1 1 always normal
mvtx2802 data sheet 95 zarlink semiconductor inc. 11.9.14.3 qosc4d ? credit_c2_g3 ? cpu address h564 11.9.14.4 qosc4e ? credit_c3_g3 ? cpu address h565 11.9.14.5 qosc4f ? credit_c4_g3 ? cpu address h566 11.9.14.6 qosc50 ? credit_c5_g3 ? cpu address h567 11.9.14.7 qosc51? credit_c6_g3 ? cpu address h568 11.9.14.8 qosc52? credit_c7_g3 ? cpu address h569 qosc4b through qosc52 represents the set of wfq para meters (see section 7.5) for gigabit port 3. the granularity of the numbers is 1, and their sum mu st be 64. qosc4b corresponds to w0, and qosc52 corresponds to w7. bits [5:0] ? w2 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w3 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w4 - credit register. (default 4?h04) bits [7:6]: ? reserved bits [5:0] ? w5 - credit register. (default 5?h8) bits [7:6]: ? reserved bits [5:0] ? w6 - credit register. (default 5?h8) bits [7:6]: ? reserved bits [5:0] ? w7 - credit register. (default 5?h10) bits [7:6]: ? reserved
mvtx2802 data sheet 96 zarlink semiconductor inc. 11.9.15 class 6 shaper control port g0 ? accessed by cpu only 11.9.15.1 qosc73 ? token_rate_g0 ? cpu address h58a 11.9.15.2 qosc74 ? token_limit_g0 ? cpu address h58b qosc73 and qosc74 correspond to parameters from sect ion 7.6 on the shaper for ef traffic. qosc73 is an integer less than 64 (average rate), with granularity 1. qosc74 is the programmed maximum value of the counter (maximum burst size). this value is expr essed in multiples of 16. qosc73 and qosc74 apply to gigabit port 0. register qosc39-credit_c6_g0 program s the peak rate. see qos application note for more information. 11.9.16 class 6 shaper control port g1 ? accessed by cpu only 11.9.16.1 qosc75 ? token_rate_g1 ? cpu address h58c 11.9.16.2 qosc76 ? token_limit_g1 ? cpu address h58d qosc75 and qosc76 correspond to parameters from sect ion 7.6 on the shaper for ef traffic. qosc75 is an integer less than 64 (average rate), with granularity 1. qosc76 is the programmed maximum value of the counter (maximum burst size). this value is expr essed in multiples of 16. qosc75 and qosc76 apply to gigabit port 0. register qosc41-credit_c6_g1 program s the peak rate. see qos application note for more information. 11.9.17 class 6 shaper control port g2 ? accessed by cpu only bits [7:0] ? bytes allow to transmit every frame time (0.512usec) when regulated by shaper logic. (default: 8?h08) bits [7:0] ? bytes allow to continue transmit out when regulated by shaper logic. (16byte/unit) (default: 8?hc0) bits [7:0] ? bytes allow to transmit every frame time (0.512usec) when regulated by shaper logic. (default: 8?h08) bits [7:0] ? bytes allow to continue transmit out when regulated by shaper logic. (16byte/unit) (default: 8?hc0)
mvtx2802 data sheet 97 zarlink semiconductor inc. 11.9.17.1 1qosc77 ? token_rate_g2 ? cpu address h58e 11.9.17.2 qosc78 ? token_limit_g2 ? cpu address h58f qosc77 and qosc78 correspond to parameters from sect ion 7.6 on the shaper for ef traffic. qosc77 is an integer less than 64 (average rate), with granularity 1. qosc78 is the programmed maximum value of the counter (maximum burst size). this value is expr essed in multiples of 16. qosc77 and qosc78 apply to gigabit port 2. qosc49-credit_c6_g2 programs the peak rate. see qos application note for more information. 11.9.18 class 6 shaper control port g3 ? accessed by cpu only 11.9.18.1 qosc79 ? token_rate_g3 ? cpu address h590 11.9.18.2 qosc7a ? token_limit_g3 ? cpu address h591 qosc79 and qosc7a correspond to parameters from section 7.6 on the shaper for ef traffic. qosc79 is an integer less than 64 (average rate), with granularity 1. qosc7a is the programmed maximum value of the counter (maximum burst size). this value is expr essed in multiples of 16. qosc79 and qosc7a apply to gigabit port 3. qosc51-credit_c6_g3 programs the peak rate. see qos application note for more information. bits [7:0] ? bytes allow to transmit every frame time (0.512usec) when regulated by shaper logic. (default: 8?h08) bits [7:0] ? bytes allow to continue transmit out when regulated by shaper logic. (16byte/unit) (default: 8?hc0) bits [7:0] ? bytes allow to transmit every frame time (0.512usec) when regulated by shaper logic. (default: 8?h08) bits [7:0] ? bytes allow to continue trans mit out when regulated by shaper logic. (16byte/unit) (default: 8?hc0)
mvtx2802 data sheet 98 zarlink semiconductor inc. 11.9.19 rdrc0 ? wred rate control 0 ?i 2 c address h085, cpu address h59a ? accessed by cpu, serial interface and i 2 c (r/w) 11.9.20 rdrc1 ? wred rate control 1 ?i 2 c address h086, cpu address h59b ? accessed by cpu, serial interface and i 2 c (r/w) 11.10 group 6 address 11.10.1 misc group 11.10.1.1 mii_op0 ? mii register option 0 ?i 2 c address h0b1, cpu address:h600 ? accessed by cpu, serial interface and i 2 c (r/w) 7430 x rate y rate bits [7:4]: ? corresponds to the percentage x% in chapter 7. used for random early drop. granularity 6.25%. (default: 4?h8) bits[3:0]: ? corresponds to the percentage y% in chapter 7. used for random early drop. granularity 6.25%. (default: 4?he) 7430 z rate b rate bits [7:4]: ? corresponds to the percentage z% in chapter 7. used for random early drop. granularity 6.25%.%. (default: 4?h6) bits[3:0]: ? corresponds to the best effort frame drop percentage b%, when shared pool is all in use and destination port best effort queue reaches ucc. used for random early drop. granularity 6.25%.%. (default: 4?h8) 7654 0 hfc 1prst np vendor spc. reg addr bit [7]: ? half duplex flow contro l (do not use half duplex mode) ? 0 = half duplex flow control always enable ? 1 = half duplex flow control by negotiation
mvtx2802 data sheet 99 zarlink semiconductor inc. 11.10.1.2 mii_op1 ? mii register option 1 ?i 2 c address 0b2, cpu address:h601 ? accessed by cpu, serial interface and i 2 c (r/w) 11.10.2 fen ? feature register ?i 2 c address h0b3, cpu address:h602 ? accessed by cpu, serial interface and i 2 c (r/w) bit[6]: ? link partner reset auto-negotiate disable bit [5] ? next page enable ? 1: enable ?0: disable bit[4:0]: ? vendor specified link status regist er address (null value means don?t use it) (default 00) 743 0 speed bit location duplex bit location bits[3:0]: ? duplex bit location in vendor specified register bits [7:4]: ? speed bit location in vendor specified register (default 00) 70 dml mii rp ip mul v-sp ds sc bits [0]: ? statistic counter enable (default 0) ? 0 ? disable ? 1 ? enable ? when statistic counter is enable, an interrupt control frame is generated to the cpu, every time a counter wraps around. this feature requires an external cpu. bits[1]: ? reserved bit [2]: ? support ds ef code. (default 0) ? 0 ? disable ? 1 ? enable (all ports) ? when 101110 is detected in ds field (tos[7:2]), the frame priority is set for 110 and drop is set for 0. bit [3]: ? enable vlan spanning tree support (default 0) ? 0 ? disable ? 1 ? enable ? when vlan spanning tree is enable the register ecr1pn are not used to program the port spanning tree status. the port spanning tree status is programmed in the vlan status field.
mvtx2802 data sheet 100 zarlink semiconductor inc. 11.10.2.1 miic0 ? mii command register 0 ? cpu address:h603 ? accessed by cpu and serial interface only (r/w) ? bit [7:0] mii data [7:0] note : before programming mii command: set fen[6], check miic3, making sure no rdy, and no valid; then program mii command. 11.10.2.2 miic1 ? mii command register 1 ? cpu address:h604 ? accessed by cpu and serial interface only (r/w) ? bit [7:0] mii data [15:8] note : before programming mii command: set fen[6], check miic3, making sure no rdy and no valid; then program mii command. 11.10.2.3 miic2 ? mii command register 2 ? cpu address:h605 ? accessed by cpu and serial interface only (r/w) note : before programming mii command: set fen[6], check miic3, making sure no rdy and no valid; then program mii command. bit [4]: ? disable ip multicast support (default 1) ? 0 ? enable ip multicast support ? 1 ? disable ip multicast support ? when enable, igmp packets are identified by sear ch engine and are passed to the cpu for processing. ip multicast packets are forwarded to the ip multicast group members according to the vlan port mapping table. bit [5]: ? enable report of new mac and vlan (default 0) ? 0 ? disable report to cpu ? 1 ? enable report to cpu ? when disable: new vlan port association report, new mac address report and aging report are disable for all ports. when enable, register se_opemode is used to enable/disable selectively each function. bit [6]: ? 0: enable mii management state machine (default 0) ? 1: disable mii management state machine bit [7]: ? 0: enable using mct link list structure ? 1: disable using mct link list structure 765 4 0 mii op register address bits [4:0]: reg_ad ? register phy address bit [6:5] op ? operation code ?10? for read command and ?01? for write command
mvtx2802 data sheet 101 zarlink semiconductor inc. 11.10.2.4 miic3 ? mii c ommand r egister 3 ? cpu address:h606 ? accessed by cpu and serial interface only (r/w) note : before programming mii command: set fen[6], check miic3, making sure no rdy and no valid; then program mii command. 11.10.2.5 miid0 ? mii d ata r egister 0 ? cpu address:h607 ? accessed by cpu and serial interface only (ro) ? bit [7:0] mii data [7:0] 11.10.2.6 miid1 ? mii data register 0 ? cpu address:h608 ? accessed by cpu and serial interface only (ro) ? bit [7:0] mii data [15:8] 11.10.2.7 led mode ? led control ?i 2 c address:h0b4; cpu address:h609 ? accessed by cpu, serial interface and i 2 c (r/w) 76 54 0 rdy valid phy address bits [4:0]: phy_ad ? 5 bit phy address bit [6] valid ? data valid from phy (read only) bit [7] rdy ? data is returned from phy (ready only) 765 43210 lpbk out pattern clock rate hold time bit[1:0] ? sample hold time (default 2?b00) ? 2?b00- 8 msec ? 2?b01- 16 msec ? 2?b10- 32 msec ? 2?b11- 64 msec bit[3:2] ? led clock speed (serial mode) (default 2?b10) ? 2?b00- sclk/128 2?b01- sclk/256 ? 2?b10- sclk/1024 2?b11- sclk/2048 ? led clock speed (parallel mode) (default 2?b10) ? 2?b00- sclk/1024 2?b01- sclk/4096 ? 2?b10- sclk/2048 2?b11- sclk/8192
mvtx2802 data sheet 102 zarlink semiconductor inc. bit[5:4] ? led indicator out pattern (default 2?b11) ? 2?b00- normal output, led signals go straight out, no logical combination ? 2?b01- 4 bi-color led mode ? 2?b10- 3 bi-color led mode ? 2?b11- programmable mode 1. normal mode: ? led_byteout_[7]:c ollision (col) ? led_byteout_[6]:full duplex (fdx) ? led_byteout_[5 ]:speed[1] (sp1) ? led_byteout_[4 ]:speed[0] (sp0) ? led_byteout_[3]:link (lnk) ? led_byteout_[2]:rx (rxd) ? led_byteout_[1]:tx (txd) ? led_byteout_[0]:f low control (fc) 2. 4 bi-color led mode ? led_byteout_[7]:col ? led_byteout_[6]:1000fdx ? led_byteout_[5]:1000hdx ? led_byteout_[4]:100fdx ? led_byteout_[3]:100hdx ? led_byteout_[2]:10fdx ? led_byteout_[1]:10hdx ? led_byteout_[0]:act note: all output qualified by link signal 3. 3 bi-color led mode: ? led_byteout_[7]:col ? led_byteout_[6]:lnk ? led_byteout_[5]:fc ? led_byteout_[4]:spd1000 ? led_byteout_[3]:spd100 ? led_byteout_[2]:fdx ? led_byteout_[1]:hdx ? led_byteout_[0]:act note: all output qualified by link signal 4. programmable mode: ? led_byteout_[7]:link ? led_byteout_[6:0]:defined by the ledsig6 ~ ledsig0 ? programmable registers. note: all output qualified by link signal bit[6]: ? reserved. must be '0' bit[7]: ? enable internal loop back. when this bit is set to '1' all ports work in internal loop back mode. for normal operation must be '0'.
mvtx2802 data sheet 103 zarlink semiconductor inc. 11.10.2.8 checksum - eeprom checksum ?i 2 c address h0c5, cpu address:h60b ? accessed by cpu, serial interface and i 2 c (r/w) 11.10.3 led user 11.10.3.1 leduser0 ?i 2 c address h0bb, cpu address:h60c ? accessed by cpu, serial interface and i 2 c (r/w) 11.10.3.2 leduser1 ?i 2 c address h0bc, cpu address:h60d ? accessed by cpu, serial interface and i 2 c (r/w) 11.10.3.3 leduser2/ledsig2 ?i 2 c address h0bd, cpu address:h60e ? accessed by cpu, serial interface and i 2 c (r/w) in serial mode: in parallel mode: this register is used for programming the led pin ? led_byteout_[2] bit [7:0]: (default 00) 70 led user0 bit [7:0]: (default 00) content will send out by led serial logic 70 led user1 bit [7:0]: (default 00) content will send out by led serial logic 70 led user2 bit [7:0]: (default 00) content will be sent out by led serial shift logic
mvtx2802 data sheet 104 zarlink semiconductor inc. 11.10.3.4 leduser3/ledsig3 ?i 2 c address:h0be, cpu address:h60f ? access by cpu, serial interface (r/w) in serial mode: in parallel mode: this register is used for programming the led pin - led_byteout_[3] 743 0 col fdx sp1 sp0 col fdx sp1 sp0 bit [3:0]: (default 4?h0) signal polarity: 0: not invert pola rity (high true) 1: invert polarity bit [7:4] (default 4?h8) signal select: 0: not select 1: select the corresponding bit when bits get selected, the led_byteout_[2] = and (all selected bits) 70 led user3 bit [7:0]: (default 8?h33) content will be sent out by led serial shift logic. 7430 col fdx sp1 sp0 col fdx sp1 sp0 bit [3:0]: (default 4?h3) signal polarity: 0: not invert pola rity (high true) 1: invert polarity bit [7:4] (default 4?h3) signal select: 0: not select 1: select the corresponding bit when bits get selected, the led_byteout_[3] = and (all selected bits)
mvtx2802 data sheet 105 zarlink semiconductor inc. 11.10.3.5 leduser4/ledsig4 ?i 2 c address:h0bf, cpu address:h610) ? access by cpu, serial interface (r/w) in parallel mode: this register is used for programming the led pin - led_byteout_[4] 11.10.3.6 leduser5/ledsig5 ?i 2 c address:h0c0, cpu address:h611 ? access by cpu, serial interface (r/w) in parallel mode: this register is used for programming the led pin - led_byteout_[5] 70 led user4 bit [7:0] (default 8?h32) content will be sent out by led serial shift logic. 7430 col fdx sp1 sp0 col fdx sp1 sp0 bit [3:0] (default 4?h2) signal polarity: 0: not invert pola rity (high true) 1: invert polarity bit [7:4] (default 4?h3) signal select: 0: not select 1: select the corresponding bit when bits get selected, the led_byteout_[4] = and (all selected bits) 70 led user5 bit [7:0] (default 8?h20) content will be sent out by led serial shift logic. 7430 col fdx sp1 sp0 col fdx sp1 sp0 bit [3:0] (default 4?h0) signal polarity: 0: not invert pola rity (high true) 1: invert polarity
mvtx2802 data sheet 106 zarlink semiconductor inc. 11.10.3.7 leduser6/ledsig6 ?i 2 c address:h0c1, cpu address:h612 ? access by cpu, serial interface (r/w) in parallel mode: this register is used for programming the led pin - led_byteout_[6] 11.10.3.8 leduser7/ledsig1_0 ?i 2 c address:h0c2, cpu address:h613 ? access by cpu, serial interface (r/w) in parallel mode: this register is used for programming the led pin - led_byteout_[2] bit [7:4] (default 4?h2) signal select: 0: not select 1: select the corresponding bit when bits get selected, the led_byteout_[5] = and (all selected bits) 70 led user6 bit [7:0] (default 8?h40) content will be sent out by led serial shift logic. 7430 col fdx sp1 sp0 col fdx sp1 sp0 bit [3:0] (default 4?b0000) signal polarity: 0: not invert pola rity (high true) 1: invert polarity bit [7:4] (default 4?b0100) signal select: 0: not select 1: select the corresponding bit when bits get selected, the led_byteout_[6] = and (all selected bits), or the polarity of led_byteout_[6] is controlled by ledsig1_0[3] 70 led user7 bit [7:0] (default 8?h61) content will be sent out by led serial shift logic. 7430 gp rx tx fc p6 rx tx fc
mvtx2802 data sheet 107 zarlink semiconductor inc. 11.10.4 miinp0 ? mii next page data register 0 ?i 2 c address:h0c3, cpu address:h614 ? access by cpu and serial interface only (r/w) 11.10.5 miinp1 ? mii next page data register 1 ?i 2 c address:h0c4, cpu address:h615) ? access by cpu and serial interface only (r/w) 11.11 group f address 11.11.1 cpu access group 11.11.1.1 gcr-global control register ? cpu address: hf00 ? accessed by cpu and serial interface. (r/w) bit [7] (default 1?b0) global output polarity: this bit controls the output polarity of all led_byteout_ and led_port_sel pins. 0: no invert polarity - (led_byteout_[7: 0] are high activate d, led_port_sel[9:0] are low activated) 1: invert polarity - (led_byteout_[7:0] are low activated, led_port_sel[9:0] are high activated) bit [6:4] (default 3?b110) signal select: 0: not select 1: select the corresponding bit when bits get selected, the led_byteout_[6] = or (all selected bits) bit[3] (default 1?b0) polarity control of led_byteout_[6] 0: not invert 1: invert bit [2:0] (default 3?b001) signal select: 0: not select 1: select the corresponding bit when bits get selected, the led_byteout_[0] = or (all selected bits) bit [7:0] mii next page data [7:0] bit [7:0] mii next page data [15:8] 76 543 2 10 ip init reset bist sr sc
mvtx2802 data sheet 108 zarlink semiconductor inc. 11.11.1.2 dcr-device status and signature register ? cpu address: hf01 ? accessed by cpu and serial interface. (ro) bit [0]: store configuration (default = 0) write ?1? followed by ?0? to store configuration into external eeprom bit[1]: store configuration and reset (default = 0) write ?1? to store configuration in to external eeprom and reset chip bit[2]: start bist (default = 0) write ?1? followed by ?0? to start the device?s bu ilt-in self-test. the resu lt is found in the dcr register. bit[3]: soft reset (default = 0) write ?1? to reset the chip bit[4]: initialization done (default = 0) this bit is meaningless when cpu is not install ed. in managed mode, cpu write this bit with ?1? to indicate initialization is comp leted and ready to forward packets. 1 ? initialization is done 0 ? initialization is not completed. bit[7] interrupt polarity (default = 0) 1 - interrupt active high 0 - interrupt active low 76543210 revision signature re binp br bw
mvtx2802 data sheet 109 zarlink semiconductor inc. 11.11.1.3 dcr01-giga port status ? cpu address: hf02 ? accessed by cpu and serial interface. (ro) bit [0]: 1 - busy writin g configuration to i 2 c 0 ? not busy writing configuration to i 2 c bit[1]: 1 - busy reading configuration from i 2 c 0 ? not busy reading configuration from i 2 c bit[2]: 1 - bist in progress 0 - bist not running bit[3]: 1 - ram error 0 ? ram ok bit[5:4]: device signature 00 ? 4 ports device, non-management mode 01 ? 8 ports device, non-management mode 10 ? 4 ports device, management mode possible (need to install cpu) 11 - 8 ports device, management mode possible (need to install cpu) bit [7:6]: revision 76 4 3 2 1 0 cic giga1 giga0 bit [1:0]: giga port 0 strap option 00 ? 100mb mii mode 01 ? invalid 10 ? gmii 11 ? pcs bit[3:2] giga port 1 strap option 00 ? 100mb mii mode 01 ? invalid 10 ? gmii 11 ? pcs bit [7] chip initialization completed. note : dcr01[7], dcr23[7], dcr45[7] an d dcr67[7] have the same function.
mvtx2802 data sheet 110 zarlink semiconductor inc. 11.11.1.4 dcr23-giga port status ? cpu address: hf03 ? accessed by cpu and serial interface. (ro) 11.11.1.5 dpst ? device port status register ? cpu address:hf06 ? accessed by cpu and serial interface (r/w) 76 4 3 2 1 0 cic giga3 giga2 bit [1:0]: giga port 2 strap option 00 ? 100mb mii mode 01 ? invalid 10 ? gmii 11 ? pcs bit[3:2] giga port 3 strap option 00 ? 100mb mii mode 01 ? invalid 10 ? gmii 11 ? pcs bit [7] chip initialization completed bit[2:0]: read back index register. this is us ed for selecting what to read back from dtst. (default 00) - 3?b000 - port 0 operating mode and negotiation status - 3?b001 - port 1 operating mode and negotiation status - 3?b010 - port 2 operating mode and negotiation status - 3?b011 - port 3 operating mode and negotiation status - 3?b1xx - reserved
mvtx2802 data sheet 111 zarlink semiconductor inc. 11.11.1.6 dtst ? data read back register 0 ? cpu address: hf07 ? accessed by cpu and serial interface (ro) this register provides various internal information as selected in dpst bit[2:0] 7 6 5 4321 0 md infodet sigdet giga lnkdn fe fdpx fc_en bit[0]: flow control enabled bit[1]: full duplex port bit[2]: fast ethernet port (if not giga) bit[3]: link is down bit[4]: giga port bit[5]: signal detect (when pcs interface mode) bit[6]: pipe signal detected (pipe mode only) bit[7]: module detected (for hot swap purpose)
mvtx2802 data sheet 112 zarlink semiconductor inc. 12.0 bga and ba ll signal description 12.1 bga views (top-view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 a avd d nc9 sca n_en nc nc nc nc nc nc nc nc nc nc nc nc s_cl k nc nc nc nc nc b_a[1 6] b_a[1 2] b_a[7 ] b_a[2 ] b_oe # b_d[ 27] b_d[ 26] nc4 nc3 b dev_ cf[0] la_d [0] nc7 nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc b_a[1 7] b_a[1 3] b_a[8 ] b_a[3 ] b_w e# b_d[ 30] dev_ cfg[ nc5 b_d[ 25] c la_d [1] la_c lk la_d [3] nc6 nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc b_a[1 8] b_a[1 4] b_a[1 1] b_a[5 ] b_a[4 ] b_d[ 28] avd d b_cl k b_d[ 22] d la_d [2] la_d [5] la_d [9] nc8 nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc b_a[9 ] b_a[1 0] b_ad sc# nc2 b_d[ 29] b_d[ 24] b_d[ 18] b_d[ 21] e la_d [8] la_d [7] la_d [6] la_d [4] agn d nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc lb_a[ 20] b_a[1 5] b_a[6 ] b_d[ 31] agn d b_d[ 17] b_d[ 23] b_d[ 19] b_d[ 16] b_d[ 14] f la_d [10] la_d [11] la_d [12] la_d [13] la_d [14] vss vss vdd vdd vcc vcc vcc vss vss vcc vcc vcc vdd vdd vss vss nc1 b_d[ 9] b_d[ 10] b_d[ 11] b_d[ 12] g la_d [15] la_d [16] la_d [19] la_d [18] la_d [17] vdd vdd b_d[ 20] b_d[ 4] b_d[ 3] b_d[ 6] b_d[ 7] h la_d [20] la_d [21] la_d [22] la_d [29] la_d [24] b_d[ 15] b_d[ 8] p_in t# b_d[ 1] b_d[ 2] j la_d [23] la_d [25] la_d [26] la_d [27] la_d [31] vdd vdd b_d[ 13] p_a[1 ] p_a[2 ] p_w e# p_rd # k la_d [28] la_d [30] la_c s0# la_d [37] la_d [33] vdd vdd b_d[ 5] p_d[ 15] p_d[ 11] p_d[ 12] p_d[ 13] l la_c s1# la_r w# la_d [32] la_d [46] la_d [41] p_cs # p_d[ 14] p_d[ 7] p_d[ 8] p_d[ 10] m la_d [34] la_d [35] la_d [36] la_d [53] la_d [48] vcc vcc p_a[ 0] b_d[ 0] p_d[ 3] p_d[ 4] p_d[ 5] n la_d [38] la_d [40] la_d [42] la_d [61] la_d [56] vcc vss vss vss vss vss vss vcc p_d[ 6] p_d[ 9] p_d[ 0] p_d[ 1] p_d[ 2] p la_d [43] la_d [44] la_d [45] la_a[ 4] la_d [39] vcc vss vss vss vss vss vss vcc t_d[ 15] t_d[1 1] t_d[1 2] t_d[1 3] t_d[1 4] r la_d [49] la_d [50] la_d [51] la_d [52] la_d [47] vss vss vss vss vss vss vss vss t_d[ 10] t_d[5 ] t_d[7 ] t_d[8 ] t_d[9 ] t la_d [58] la_d [57] la_d [55] la_d [54] la_a [7] vss vss vss vss vss vss vss vss t_d[ 6] t_d[4 ] t_d[2 ] t_d[1 ] t_d[0 ] u la_d [63] la_d [62] la_d [60] la_d [59] la_a [11] vcc vss vss vss vss vss vss vcc s_rs t# t_d[3 ] tmo de[1] tmo de[0] res out# v la_a[ 6] la_a[ 5] la_a[ 3] la_a[ 14] la_a [18] vcc vss vss vss vss vss vss vcc nc[7] nc lesy no# le_c lk0 le_d o w la_a[ 10] la_a[ 9] la_a[ 8] la_a[ 20] g0_t xd[1] vcc vcc nc[3] nc[1] nc nc[6] nc[5] y la_a[ 15] la_a[ 13] la_a[ 12] g0_c rs/l g0_t xd[4] nc[6] nc nc[4] nc[2] nc[0] aa la_a[ 19] la_a[ 17] la_a[ 16] gre fc[0] g0_t xd[7] vdd vdd nc[0] nc[3] nc nc miitx ck[7] ab miitx ck[0] g0_t xd[2] g0_t xd[0] g0_t xclk g0_t x_er vdd vdd nc[7] nc nc[7] nc[5] nc[4] ac g0_r xclk g0_t xd[5] g0_t xd[3] g0_r xd[2] g0_r xd[6] nc[2] nc[4] nc[2] nc[1] nc ad g0_r xd[0] g0_t x_en g0_c ol g0_t xd[6] g0_r x_dv vss vdd nc[0] nc nc nc nc ae g0_r xd[5] g0_r xd[4] g0_r xd[3] g0_r xd[1] g1_t xd[0] vss vdd vdd vdd vcc vcc vcc vss vss vcc vcc vcc vdd vdd vss vss nc[7] nc[6] nc[5] nc[3] nc[1] af g0_r xd[7] g0_r x_er gre fc[1] g1_r xd[2] g1_r xd[5] g1_r xd[7] g2_t xd[0] g2_t xd[7] g2_r xd[2] g2_r xd[4] g2_r xd[5] g3_t xd[1] g3_t xd[6] g3_c ol g3_r xd[3] g3_r xd[6] ind_ cm g3_r xd[4] g3_r x_er nc[3] nc[1] nc[4] nc[2] nc[4] nc nc[5] nc nc[6] nc nc ag g1_t xd[1] g1_t xclk g1c rs/l g1_t xd[7] g2_t xclk g1_r xd[4] g2_t xd[4] g2_t xd[3] g2_r xd[3] g2_r xclk g2_r xd[7] g2_r x_er g3_t x_en g3_r xd[0] g3_r xd[5] g3_r xd[7] nc m_m dio nc[1] nc[5] nc[6] nc[7] nc nc[5] miitx ck[5] nc[1] nc[3] nc[4] nc nc[5] ah g1_t xd[2] g1_t xd[3] miitx ck[1] g1_r xd[0] g1_r xclk g2c rs/l miitx ck[2] g2_t x_en g2_r xd[1] g2_r x_dv g3_t xclk g3_t xd[3] g3_t xd[5] g3_r xclk g3_r xd[2] g3_r x_dv nc nc[4] nc[6] nc nc nc nc nc[3] nc nc[3] nc[6] nc[1] nc[2] nc aj g1_t xd[5] g1_t xd[4] g1_t x_er g1_c ol g1_r xd[6] gre fc[2] g2_t xd[2] g2_t xd[6] g2_r xd[0] g2_r xd[6] gre fc[3] g3_t xd[2] miitx ck[3] g3_t x_er g3_r xd[1] m_m dc nc[0] nc[5] nc[7] nc[0] nc nc nc[0] nc[6] nc[0] nc nc[4] nc nc nc[0] ak g1_t xd[6] g1_t x_en g1_r xd[1] g1_r xd[3] g1_r x_dv g1_r x_er g2_t xd[1] g2_t xd[5] g2_t x_er g2_c ol g3_c rs/l g3_t xd[0] g3_t xd[4] g3_t xd[7] cm_ clk nc nc[2] miitx ck[4] nc nc[2] nc[3] nc nc[1] nc[7] nc[2] nc nc[7] nc miitx ck[6] nc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
mvtx2802 data sheet 113 zarlink semiconductor inc. 12.2 ball- signal descriptions all pins are cmos type; all input pins are 5 volt tolerance, and all output pins are 3.3 cmos drive. 12.2.1 ball signal description in managed mode ball no(s) symbol i/o description cpu bus interface k27, l27, k30, k29, k28, l30, n27, l29, l28, n26, m30, m29, m28, n30, n29, n28 p_data[15:0] i/o-ts with pull up processor bus data bit [15:0] j28, j27, m26 p_a[2:0] input processor bus address bit [2:0] j29 p_we# input with weak internal pull up cpu bus-write enable j30 p_rd# input with weak internal pull up cpu bus-read enable l26 p_cs# input with weak internal pull up chip select h28 p_int# output cpu interrupt frame buffer interface u1, u2, n4, u3, u4, t1, t2, n5, t3, t4, m4, r4, r3, r2, r1, m5, r5, l4, p3, p2, p1, n3, l5, n2, p5, n1, k4, m3, m2, m1, k5, l3, j5, k2, h4, k1, j4, j3, j2 , h5, j1, h3, h2, h1, g3, g4, g5, g2, g1, f5, f4, f3, f2, f1, d3, e1, e2, e3, d2., e4, c3, d1, c1, b2 la_d[63:0] i/o-ts with pull up frame bank a? data bit [63:0] aa1, v5, aa2, aa3, y1, v4, y2, y3, u5, w1, w2, w3, t5, v1, v2, p4, v3 la_a[19:3] output frame bank a ? address bit [19:3] w4 la_a[20] output with pull up frame bank a ? address bit [20] c2 la_clk output frame bank a clock input k3 la_cs0# output with pull up frame bank a low portion chip selection l1 la_cs1# output with pull up frame bank a high portion chip selection
mvtx2802 data sheet 114 zarlink semiconductor inc. l2 la_rw# output with pull up frame bank a read/write d18, b18, c18, a17, e17, b17, c17, e16, d17, b16, e15, c16, d16, d15, e14, c15, b15, e13, a15, d14, c14, d13, b14, a14, c13, e12, b13, a13, d12, c12, b12, a12, a11, e10, c10, b10, e9, a10, d11, d10, d8, d9, c9, b9, a9, c8, b8, a8, c7, e7, d7, b7, e8, a7, d6, c6, e6, b6, a6, a5, b5, c5, b4,a4 nc i/o-ts with pullup. no connect d22, d20, e20, d21, a21, d19, b21, c21, a20, b20, e19, c20, a19, b19, e18, c19, a18 nc output switch database interface e24,b27, d27, c27, a27, a28, b30, d28, e27, c30, d30, g26, e28, d29, e26, e29, h26, e30, j26, f30, f29, f28, f27, h27, g30, g29, k26, g27, g28, h30, h29, m27 b_d[31:0] i/o-ts with pu ll up switch database domain - data bit [31:0] c22, b22, a22, e22, c23, b23, a23, c24, d24, d23, b24, a24, e23, c25, c26, b25, a25 b_a[18:2] output switch database address (512k) - address bit [18:2] c29 b_clk output switch database clock input d25 b_adsc# output with pull up switch database address status control b26 b_we# output with pull up switch database write chip select a26 b_oe# output with pull up switch database read chip select mii management interface aj16 m_mdc output mii management data clock ? (common for all mii ports [3:0]) ball no(s) symbol i/o description
mvtx2802 data sheet 115 zarlink semiconductor inc. ag18 m_mdio i/o-ts with pull up mii management data i/o ? (common for all mii ports ?[3:0])) 2.5mhz gmii / mii interface (193) gigabit ethernet access port aj11, aj6, af3,aa4 gref_clk [3:0] input w/ pull up giga reference clock ad29, ak30, aj22, ag17, nc ak15 cm_clk input w/ pull up common clock shared by port g[3:0] af17 ind/cm input w/ pull up 1: select gref_clk[3:0] as clock 0: select cm_clk as clock for all ports aj13, ah7, ah3, ab1 mii tx clk[3:0] input w/ pull up aa30, ak29, ag25, ak18, nc ag16, af16, ag15, af18, af15, ah15, aj15, ag14 ag11, aj10, af11, af10, ag9, af9, ah9, aj9 af6, aj5, af 5, ag6, ak4, af4, ak3, ah4 af1, ac5, ae1, ae2, ae3, ac4, ae4, ad1 g3_rxd[7:0] g2_rxd[7:0] g1_rxd[7:0] g0_rxd[7:0] input w/ pull up g[3: 0] port ? receive data bit [7:0] v26, w29, w30, y28, w26, y29, w27, y30 ab26, ae27, ae28, ac27, ae29, ac26, ae30, ad26 ak27, ah27, af26, aj27, ah26, ak25, ag26, aj25 ag22, ag21, ag20, af22, ak21, ak20, af21, aj20 nc ah16, ah10, ak5, ad5 g[3:0]_rx_dv input w/ pull down g[3:0]port ? receive data valid w28, ad30, ak28, ah22, nc af19, ag12, ak6, af2 g[3:0]_rx_er input w/ pull up g[3:0]port ? receive error v27, ad27, aj28, ah23, nc ball no(s) symbol i/o description
mvtx2802 data sheet 116 zarlink semiconductor inc. ak11, ah6, ag3, y4 g[3:0]_crs/link input w/ pull down g[3:0]port ? carrier sense ac30, aj29, ag23, ak16, nc af14, ak10, aj4, ad3 g[3:0]_col in put w/ pull up g[3:0]port ? collision detected aa28, af29, aj26, aj21, nc ah21, ah14, ag10, ah5, ac1 g[3:0]_rxclk input w/ pull up g[3:0]port ? receive clock aa29, af27, ak26, nc ak14, af13, ah13, ak13, ah12, aj12, af12, ak12 af8, aj8, ak8, ag7, ag8, aj7, ak7, af7 ag4, ak1, aj1, aj2, ah2, ah1, ag1, ae5 aa5, ad4, ac2, y5, ac3, ab2, w5, ab3 g3_txd[7:0] g2_txd[7:0] g1_txd[7:0] g0_txd[7:0] output g[3:0]port ? transmit data bit [7:0] ab28, y26, ab29, ab30, aa27, ac28, ac29, aa26 ae26, af28, ag30, ag28, ag27, ah29, ah28, aj30 ak24, aj24, ag24, af24, ah24, af23, ak23, aj23 aj19, ah19, aj18, ah18, af20, ak17, ag19, aj17 nc ag13, ah8, ak2, ad2 g[3:0]_tx_en output w/ pull up g[3:0]port ? transmit data enable y27, ag29, ah25, ak19, nc aj14, ak9, aj3, ab5 g[3:0]_tx_er output w/ pull up g[3:0]port ? transmit error ab27, af30, af 25, ah20, nc ah11, ag5, ag2, ab4 g[3:0]_ tx clk output g[3:0]port ? gigabit transmit clock ad28, ah30, ak22, ah17, nc pma interface (193) gigabit ethernet access port (pcs) aj11, aj6, af3,aa4 gref_clk [3:0] input w/ pull up gigabit reference clock ad29, ak30, aj22, ag17, nc ball no(s) symbol i/o description
mvtx2802 data sheet 117 zarlink semiconductor inc. ak15 cm_clk input w/ pull up common clock shared by port g[3:0] af17 ind/cm input w/ pull up 1: select gref_clk[3:0] as clock 0: select cm_clk as clock for all port ag16, af16, ag15, af18, af15, ah15, aj15, ag14 ag11, aj10, af11, af10, ag9, af9, ah9, aj9 af6, aj5, af 5, ag6, ak4, af4, ak3, ah4 af1, ac5, ae1, ae2, ae3, ac4, ae4, ad1 g3_rxd[7:0] g2_rxd[7:0] g1_rxd[7:0] g0_rxd[7:0] input w/ pull up g[3:0]port ? pma receive data bit [7:0] v26, w29, w30, y28, w26, y29, w27, y30 ab26, ae27, ae28, ac27, ae29, ac26, ae30, ad26 ak27, ah27, af26, aj27, ah26, ak25, ag26, aj25 ag22, ag21, ag20, af22, ak21, ak20, af21, aj20 nc ah16, ah10, ak5, ad5 gp[3:0]_rx_d[8] input w/ pull down g[3:0]port ? pma receive data bit [ 8 ] w28, ad30, ak28, ah22, nc af19, ag12, ak6, af2 gp[3:0]_rx_d[9] input w/ pull up g[3:0]port ? pma receive data bit [ 9 ] v27, ad27, aj28, ah23, nc af14, ak10, aj4, ad3 gp[3:0]_ rxclk 1 input w/ pull up g[3:0]port ? pma receive clock 1 aa28, af29, aj26, aj21, nc ah14, ag10, ah5, ac1 gp[3:0]_rxcl k0 input w/ pull up g[3:0]port ? pma receive clock 0 aa29, af27, ak26, ah21, nc ball no(s) symbol i/o description
mvtx2802 data sheet 118 zarlink semiconductor inc. ak14, af13, ah13, ak13, ah12, aj12, af12, ak12 af8, aj8, ak8, ag7, ag8, aj7, ak7, af7 ag4, ak1, aj1, aj2, ah2, ah1, ag1, ae5 aa5, ad4, ac2, y5, ac3, ab2, w5, ab3 g3_txd[7:0] g2_txd[7:0] g1_txd[7:0] g0_txd[7:0] output g[3:0]port ? pma transmit data bit [7:0] ab28, y26, ab29, ab30, aa27, ac28, ac29, aa26 ae26, af28, ag30, ag28, ag27, ah29, ah28, aj30 ak24, aj24, ag24, af24, ah24, af23, ak23, aj23 aj19, ah19, aj18, ah18, af20, ak17, ag19, aj17 nc ag13, ah8, ak2, ad2 gp[3:0]_txd[8] output w/ pull up g[3:0]port ? pma transmit data bit [8] y27, ag29, ah25, ak19, nc aj14, ak9, aj3, ab5 gp[3:0]_txd[9] ou tput w/ pull up g[3:0]port ? pma transmit data bit [ 9 ] ab27, af30, af 25, ah20, nc ah11, ag5, ag2, ab4 g[3:0]_ txclk output g[3:0]port ? pma gigabit transmit clock ad28, ah30, ak22, ah17, nc test facility (3) u29 t_mode0 i/o-ts with pull up test ? set upon reset, and provides nand tree test output during test mode use external pull up for normal operation u28 t_mode1 i/o-ts with pull up test ? set upon reset, and provides nand tree test output during test mode use external pull up for normal operation ball no(s) symbol i/o description
mvtx2802 data sheet 119 zarlink semiconductor inc. a3 scan_en input w/ pull down enable test mode for normal operation leave it open led interface (serial and parallel) r28, t26, r27, t27, u27, t28, t29, t30 t_d[7:0]/ led_pd[7:0] output while resetting, t_d[7,0] are in input mode and are used as strapping pins. internal pullup led_pd - parallel led data [7:0] p27, r26, r30, r29 t_d[11:8]/ led_pt[3:0] output while resetting, t_d[11:8] are in input mode and are used as strapping pins. internal pullup led_pr[3:0] ? parallel led port sel [3:0] p26, p30, p29, p28, t_d[15:12]/ led_pt[7:4] output while resetting, t_d[15:12] ar e in input mode and are used as strapping pins. internal pullup led_pr[7:4] ? no meaning v29 led_clk0/ led_pt[8] output led_clk0 - led serial interface output clock led_pt[8] ? parallel led port sel [8] v30 led_blink/ led_do/ led_pt[9] output while resetting, led-blink is in input mode and is used as strapping pin. 1: no blink, 0: blink. internal pullup. led_do - led serial data output stream led_pt[9] ? parallel led port sel [9] ball no(s) symbol i/o description
mvtx2802 data sheet 120 zarlink semiconductor inc. v28 led_pm/ led_synco# output w/ pull up while resetting, led_pm is in input mode and is used as strapping pin. internal pull up. 1: enable parallel interface, 0: enable serial interface. led_synco# - led output data stream envelop system clock, power, and ground pins a16 s_clk input system clock at 133 mhz u26 s_rst# input - st reset input u30 resout# output reset phy b1 dev_cfg[0] input w/ pull down not used b28 dev_cfg[1] input w/ pull down not used ae7, ae9, f10, f21, f22, f9, g25, g6, j25, j6, k25, k6, aa25, aa6, ab25, ab6, ad25, ae10, ae21, ae22 vdd power core +2.5 volt dc supply v14, v15, v16, v17, v18, f16, f24, f25, f6, f7, n13, n14, n15, n16, n17, n18, p13, p14, p15, p16, p17, p18, r13, r14, r15, r16, r17, r18, r25, r6, t13, t14, t15, t16, t17, t18, t25, t6, u13, u14, u15, u16, u17, u18, v13, ad6, ae15, ae16, ae24, ae25, ae6, f15 vss ground ground a1, c28 avdd power analog +2.5 volt dc supply e5, e25 avss ground analog ground ae12, ae13, ae14, ae17, ae18, ae19, f12, f13, f14, f17, f18, f19, m25, m6, n25, n6, p25, p6, u25, u6, v25, v6, w25, w6 vcc power i/o +3.3 volt dc supply ball no(s) symbol i/o description
mvtx2802 data sheet 121 zarlink semiconductor inc. bootstrap pins (default= pull up, 1= pull up 0= pull down) ad2, ab5 g0_tx_en, g0_tx_er default: pcs giga0 mode: g0_txen g0_txer 0 0 mii 0 1 invalid 1 0 gmii 1 1 pcs ak2, aj3 g1_tx_en, g1_txer default: pcs giga1 mode: g1_txen g1_txer 0 0 mii 0 1 invalid 1 0 gmii 1 1 pcs ah8, ak9 g2_tx_en, g2_tx_er default: pcs giga2 mode: g2_txen g2_txer 0 0 mii 0 1 invalid 1 0 gmii 1 1 pcs ag13, aj14 g3_tx_en, g3_t x_er default: pcs giga3 mode: g3_txen g3_txer 0 0 mii 0 1 invalid 1 0 gmii 1 1 pcs after reset t_d[15:0] are used by the led interface t30 t_d[0] 1 giga link active status 0 ? active low 1 ? active high t29 t_d[1] 1 power saving 0 ? no power saving 1 ? power saving stop mac clock if no mac activity. t28 t_d[2] must be pulled-down reserved - must be pulled-down u27 t_d[3] 1 hot plug port module detection enable 0 ? module detection enable 1 ? module detection disable ball no(s) symbol i/o description
mvtx2802 data sheet 122 zarlink semiconductor inc. t27 t_d[4] must be pulled-down reserved - must be pulled-down r27 t_d[5] 1 sram memory size 0 ? 512k sram 1 ? 256k sram t26 t_d[6] 1 cpu port mode 0 ? 8 bit cpu data bus 1 ? 16 bit cpu data bus r28 t_d[7] 1 fdb memory depth 1? one memory layer 0 ? two memory layers w4, e21 la_a[20], lb_a[20] 11 fdb memory size 11 - 2m per bank = 4m total 10 - 1m per bank = 2m total 0x - 512k per bank = 1m total r29 t_d[8] 1 eeprom installed 0 ? eeprom is installed 1 ? eeprom is not installed r30 t_d[9] 1 mct aging enable 0 ? mct aging disable 1 ? mct aging enable r26 t_d[10] 1 fcb handle aging enable 0 ? fcb handle aging disable 1 ? fcb handle aging enable p27 t_d[11] 1 timeout reset enable 0 ? timeout reset disable 1 ? timeout reset enable issue reset if any state machine did not go back to idle for 5sec. p28,p29 t_d[13:12] reserved p30 t_d[14] 1 cpu installed 0 - cpu installed. 1 - cpu is not installed. ball no(s) symbol i/o description
mvtx2802 data sheet 123 zarlink semiconductor inc. p26 t_d[15] 1 external ram test 0 ? perform the infinite loop of zbt ram bist. debug test only 1 ? regular operation. after reset p_d[8:0] are used by the cpu bus interface n30, n29, n28 p_d[2:0] 111 zbt ram la_clk turning 3?b000 - control by reg. lclkcr [2:0] 3?b001 - delay by method # 0 3?b010 - delay by method # 1 3?b011 - delay by method # 2 3?b100 - delay by method # 3 3?b101 - delay by method # 4 3?b110 - delay by method # 5 3?b111 - delay by method # 6 use method 6 for normal operation. external pull up not required m30, m29, m28 p_d[5:3] 111 no use l29, l28, n26 p_d[8:6] 111 sbram b_clk turning 3?b000 - control by bclkcr [2:0] 3?b001 - delay by method # 0 3?b010 - delay by method # 1 3?b011 - delay by method # 2 3?b100 - delay by method # 3 3?b101 - delay by method # 4 3?b110 - delay by method # 5 3?b111 - delay by method # 6 use method 6 for normal operation. external pull up not required ball no(s) symbol i/o description
mvtx2802 data sheet 124 zarlink semiconductor inc. notes: # = active low signal input = input signal in-st = input signal with schmitt-trigger output = output signal (tri-state driver out-od= output signal with open-drain driver i/o-ts = input & output signal with tri-state driver i/o-od = input & output signal with open-drain driver 12.2.2 ball ? signal description in unmanaged mode ball no(s) symbol i/o description l30 trunk0_en i/o - ts with pull up trunk enable external pull up or unconnected- disable trunk group 0 and 1 external pull down - enable trunk group 0 and 1 see register trunk0_mode for port selection and trunk enable. n27 trunk1_en i/o - ts with pull up trunk enable external pull up or unconnected - disable trunk group 2 and 3 external pull down - enable trunk group 2 and 3 see register trunk1_mode for port selection and trunk enable. l29, l28, n26, m30, m29, m28, n30, n29, n28 p_d[8:0] i/o - ts with pull up boot strap function - see bootstrap section k27, l27, k30, k29, k28, j28, h28 reserved not used - leave unconnected i 2 c interface (0) note: in unmanaged mode, use i 2 c and serial control interface to configure the system j27 scl output i 2 c data clock m26 sda i/o-ts with pull up i 2 c data i/o serial control interface j29 ps_strobe input wit h weak internal pull up serial strobe pin j30 ps_di input with weak internal pull up serial data input l26 ps_do (autofd) output with pull up serial data output (autofd)
mvtx2802 data sheet 125 zarlink semiconductor inc. frame buffer interface u1, u2, n4, u3, u4,t1,t2, n5, t3, t4, m4, r4, r3, r2, r1, m5, r5, l4, p3, p2, p1, n3,l5, n2, p5, n1, k4, m3, m2, m1, k5, l3, j5, k2, h4, k1 , j4, j3, j2, h5, j1, h3, h2, h1, g3, g4, g5, g2, g1, f5, f4, f3, f2, f1, d3, e1,e2,e3, d2., e4, c3, d1, c1, b2 la_d[63:0] i/o-ts with pull up frame bank a? data bit [63:0] aa1, v5, aa2, aa3, y1, v4, y2, y3, u5, w1, w2, w3, t5, v1, v2, p4, v3 la_a[19:3] output frame bank a ? address bit [19:3] w4 la_a[20] output with pull up frame bank a ? address bit [20] c2 la_clk output frame bank a clock input k3 la_cs0# output with pull up frame bank a low portion chip selection l1 la_cs1# output with pull up frame bank a high portion chip selection l2 la_rw# output with pull up frame bank a read/write d18, b18, c18, a17, e17, b17, c17, e16, d17, b16, e15, c16, d16, d15, e14, c15, b15, e13, a15, d14, c14, d13, b14, a14, c13, e12, b13, a13, d12, c12, b12, a12, a11, e10, c10, b10, e9, a10, d11, d10, d8, d9, c9, b9, a9, c8, b8, a8, c7, e7, d7, b7, e8, a7, d6, c6, e6, b6, a6, a5, b5, c5, b4,a4 nc i/o-ts with pull up. no use d22, d20, e20, d21, a21, d19, b21, c21, a20, b20, e19, c20, a19, b19, e18, c19, a18 nc output no use e21 lb_a[20] output with pull up bootstrap pin d5 nc output no use b11 nc output with pull up no use e11 nc output with pull up no use c11 nc output with pull up no use ball no(s) symbol i/o description
mvtx2802 data sheet 126 zarlink semiconductor inc. switch database interface e24,b27, d27, c27, a27, a28, b30, d28, e27, c30, d30, g26, e28, d29, e26, e29, h26, e30, j26, f30, f29, f28, f27, h27, g30, g29, k26, g27, g28, h30, h29, m27 b_d[31:0] output with pull up switch database domain ? data bit [31:0] c22, b22, a22, e22, c23, b23, a23, c24, d24, d23, b24, a24, e23, c25, c26, b25, a25 b_a[18:2] output switch database address (512k) ? address bit [18:2] c29 b_clk output switch database clock input d25 b_adsc# output with pull up switch database address status control b26 b_we# output with pull up switch database write chip select a26 b_oe# output with pull up swit ch database read chip select mii management interface aj16 m_mdc output mii management data clock ? (common for all mii ports [3:0]) ag18 m_mdio i/o-ts with pull up mii management data i/o ? (common for all mii ports ?[3:0])) 2.5mhz gmii / mii interface (193) gigabit ethernet access port aj11, aj6, af3,aa4 gref_clk [3:0] input w/ pull up gigabit reference clock ad29, ak30, aj22, ag17, nc ak15 cm_clk input w/ pull up co mmon clock shared by port g[3:0] af17 ind/cm input w/ pull up 1: se lect gref_clk[3:0] as clock 0: select cm_clk as clock for all ports aj13, ah7, ah3, ab1 mii tx clk[3:0] input w/ pull up aa30, ak29, ag25, ak18, nc ag16, af16, ag15, af18, af15, ah15, aj15, ag14 ag11, aj10, af11, af10, ag9, af9, ah9, aj9 af6, aj5, af5, ag6, ak4, af4, ak3, ah4 af1, ac5, ae 1, ae2, ae3, ac4, ae4, ad1 g3_rxd[7:0] g2_rxd[7:0] g1_rxd[7:0] g0_rxd[7:0] input w/ pull up g[3:0] port ? receive data bit [7:0] ball no(s) symbol i/o description
mvtx2802 data sheet 127 zarlink semiconductor inc. v26, w29, w30, y28, w26, y29, w27, y30 ab26, ae27, ae28, ac27, ae29, ac26, ae30, ad26 ak27, ah27, af26, aj27, ah26, ak25, ag26, aj25 ag22, ag21, ag20, af22, ak21, ak20, af21, aj20 nc ah16, ah10, ak5, ad5 g[3:0]_rx_dv input w/ pull down g[3:0]port ? receive data valid w28, ad30, ak28, ah22, nc af19, ag12, ak6, af2 g[3:0]_ rx_er input w/ pull up g[3:0]port ? receive error v27, ad27, aj28, ah23, nc ak11, ah6, ag3, y4 g[3:0]_crs/lin k input w/ pull down g[3:0]port ? carrier sense ac30, aj29, ag23, ak16, nc af14, ak10, aj4, ad3 g[3:0]_ col input w/ pull up g[3:0] port ? collision detected aa28, af29, aj26, aj21, nc ah14, ag10, ah5, ac1 g[3:0]_rxclk input w/ pull up g[3:0]port ? receive clock aa29, af27, ak26, ah21, nc ak14, af13, ah13, ak13, ah12, aj12, af12, ak12 af8, aj8, ak8, ag7, ag8, aj7, ak7, af7 ag4, ak1, aj1, aj2, ah2, ah1, ag1, ae5 aa5, ad4, ac2, y5, ac3, ab2, w5, ab3 g3_txd[7:0] g2_txd[7:0] g1_txd[7:0] g0_txd[7:0] output g[3:0]port ? transmit data bit [7:0] ab28, y26, ab29, ab30, aa27, ac28, ac29, aa26 ae26, af28, ag30, ag28, ag27, ah29, ah28, aj30 ak24, aj24, ag24, af24, ah24, af23, ak23, aj23 aj19, ah19, aj18, ah18, af20, ak17, ag19, aj17 nc ag13, ah8, ak2, ad2 g[3:0]_tx_en output w/ pull up g[3:0]port ? transmit data enable y27, ag29, ah25, ak19, nc aj14, ak9, aj3, ab5 g[3:0]_tx_er output w/ pull up g[3:0]port ? transmit error ab27, af30, af 25, ah20, nc ah11, ag5, ag2, ab4 g[3:0]_ txclk output g[3:0]port ? gigabit transmit clock ball no(s) symbol i/o description
mvtx2802 data sheet 128 zarlink semiconductor inc. ad28, ah30, ak22, ah17, nc pma interface (193) gigabit ethernet access port (pcs) aj11, aj6, af3,aa4 gref_clk [3:0] input w/ pull up gigabit reference clock ad29, ak30, aj22, ag17, nc ak15 cm_clk input w/ pull up co mmon clock shared by port g[3:0] af17 ind/cm input w/ pull up 1: se lect gref_clk[3:0] as clock 0: select cm_clk as clock for all port ag16, af16, ag15, af18, af15, ah15, aj15, ag14 ag11, aj10, af11, af10, ag9, af9, ah9, aj9 af6, aj5, af5, ag6, ak4, af4, ak3, ah4 af1, ac5, ae 1, ae2, ae3, ac4, ae4, ad1 g3_rxd[7:0] g2_rxd[7:0] g1_rxd[7:0] g0_rxd[7:0] input w/ pull up g[3:0]port ? pma receive data bit [ 7:0 ] v26, w29, w30, y28, w26, y29, w27, y30 ab26, ae27, ae28, ac27, ae29, ac26, ae30, ad26 ak27, ah27, af26, aj27, ah26, ak25, ag26, aj25 ag22, ag21, ag20, af22, ak21, ak20, af21, aj20 nc ah16, ah10, ak5, ad5 g[3:0]_rx_d[8] input w/ pull down g[3:0]port ? pma receive data bit [ 8 ] w28, ad30, ak28, ah22, nc af19, ag12, ak6, af2 g[3:0]_rx_d[9] input w/ pull up g[3:0]port ? pma receive data bit [9] v27, ad27, aj28, ah23, nc af14, ak10, aj4, ad3 g[3:0]_ rxclk1 input w/ pull up g[3:0]port ? pma receive clock 1 aa28, af29, aj26, aj21, nc ah14, ag10, ah5, ac1 g[3:0]_rxclk0 input w/ pull up g[3:0]port ? pma receive clock 0 aa29, af27, ak26, ah21, nc ball no(s) symbol i/o description
mvtx2802 data sheet 129 zarlink semiconductor inc. ak14, af13, ah13, ak13, ah12, aj12, af12, ak12 af8, aj8, ak8, ag7, ag8, aj7, ak7, af7 ag4, ak1, aj1, aj2, ah2, ah1, ag1, ae5 aa5, ad4, ac2, y5, ac3, ab2, w5, ab3 g3_txd[7:0] g2_txd[7:0] g1_txd[7:0] g0_txd[7:0] output g[3:0]port ? pma transmit data bit [7:0] ab28, y26, ab29, ab30, aa27, ac28, ac29, aa26 ae26, af28, ag30, ag28, ag27, ah29, ah28, aj30 ak24, aj24, ag24, af24, ah24, af23, ak23, aj23 aj19, ah19, aj18, ah18, af20, ak17, ag19, aj17 nc ag13, ah8, ak2, ad2 g[3:0]_txd[8] output w/ pull up g[3:0]port ? pma transmit data bit [ 8 ] y27, ag29, ah25, ak19, nc aj14, ak9, aj3, ab5 g[3:0]_tx_d[9] output w/ pull up g[3:0]port ? pma transmit data bit [9] ab27, af30, af 25, ah20, nc ah11, ag5, ag2, ab4 g[3:0]_ txclk out put g[3:0]port ? pma gigabit transmit clock ad28, ah30, ak22, ah17, nc test facility (3) u29 t_mode0 i/o-ts with pull up test ? set upon reset, and provides nand tree test output during test mode use external pull up for normal operation u28 t_mode1 i/o-ts with pull up test ? set upon reset, and provides nand tree test output during test mode use external pull up for normal operation a3 scan_en input w/ pull down enable test mode for normal operation leave it open led interface (serial and parallel) r28, t26, r27, t27, u27, t28, t29, t30 t_d[7:0]/ led_pd[7:0] output while resetting, t_d[7,0] are in input mode and are used as strapping pins. internal pullup led_pd - parallel led data [7:0] ball no(s) symbol i/o description
mvtx2802 data sheet 130 zarlink semiconductor inc. p27, r26, r30, r29 t_d[11:8]/ led_pt[3:0] output while resetting, t_d[11:8] are in input mode and are used as strapping pins. internal pullup led_pr[3:0] ? parallel led port sel [3:0] p26, p30, p29, p28, t_d[15:12]/ led_pt[7:4] output while resetting, t_d[15:12] are in input mode and are used as strapping pins. internal pullup led_pr[7:4] ? meanless v29 led_clk0/ led_pt[8] output led_clk0 ? led serial interface output clock led_pt[8] ? parallel led port sel [8] v30 led_blink/ led_do/ led_pt[9] output while resetting, led-blink is in input mode and is used as strapping pin. 1: no blink, 0: blink. internal pullup. led_do - led serial data output stream led_pt[9] ? parallel led port sel [9] v28 led_pm/ led_synco# output w/ pull up while rese tting, led_pm is in input mode and is used as strapping pin. internal pull up. 1: enable parallel interface, 0: enable serial interface. led_synco# - led output data stream envelop system clock, power, and ground pins a16 s_clk input system clock at 133 mhz u26 s_rst# input ? st reset input u30 resout# output reset phy b1 dev_cfg[0] input w/ pull down not used b28 dev_cfg[1] input w/ pull down not used ae7, ae9, f10, f21, f22, f9, g25, g6, j25, j6, k25, k6, aa25, aa6, ab25, ab6, ad25, ae10, ae21, ae22 vdd power core +2.5 volt dc supply ball no(s) symbol i/o description
mvtx2802 data sheet 131 zarlink semiconductor inc. v14, v15, v16, v17, v18, f16, f24, f25, f6, f7, n13, n14, n15, n16, n17, n18, p13, p14, p15, p16, p17, p18, r13, r14, r15, r16, r17, r18, r25, r6, t13, t14, t15, t16, t17, t18, t25, t6, u13, u14, u15, u16, u17, u18, v13, ad6, ae15, ae16, ae24, ae25, ae6, f15 vss ground ground a1, c28 avdd power analog +2.5 volt dc supply e5, e25 avss ground analog ground ae12, ae13, ae14, ae17, ae18, ae19, f12, f13, f14, f17, f18, f19, m25, m6, n25, n6, p25, p6, u25, u6, v25, v6, w25, w6 vcc power i/o +3.3 volt dc supply bootstrap pins (default= pull up, 1= pull up 0= pull down) ad2, ab5 g0_tx_en, g0_tx_er default: pcs giga0 mode: g0_txen g0_txer 0 0 mii 0 1 invalid 1 0 gmii 1 1 pcs ak2, aj3 g1_tx_en, g1_txer default: pcs giga1 mode: g1_txen g1_txer 0 0 mii 0 1 invalid 1 0 gmii 1 1 pcs ah8, ak9 g2_tx_en, g2_tx_er default: pcs giga2 mode: g2_txen g2_txer 0 0 mii 0 1 invalid 1 0 gmii 1 1 pcs ag13, aj14 g3_tx_en, g3_tx_er default: pcs giga3 mode: g3_txen g3_txer 0 0 mii 0 1 invalid 1 0 gmii 1 1 pcs ball no(s) symbol i/o description
mvtx2802 data sheet 132 zarlink semiconductor inc. after reset t_d[15:0] are used by the led interface t30 t_d[0] 1 giga link active status 0 ? active low 1 ? active high t29 t_d[1] 1 power saving 0 ? no power saving 1 ? power saving stop mac clock if no mac activity. t28 t_d[2] must be pulled-down reserved - must be pulled-down u27 t_d[3] 1 hot plug port module detection enable 0 ? module detection enable 1 ? module detection disable t27 t_d[4] must be pulled-down reserved - must be pulled-down r27 t_d[5] 1 sram memory size 0 ? 512k sram 1 ? 256k sram t26 t_d[6] 1 cpu port mode 0 ? 8 bit cpu data bus 1 ? 16 bit cpu data bus r28 t_d[7] 1 fdb memory depth 1? one memory layer 0 ? two memory layers w4, e21 la_a[20], lb_a[20] 11 fdb memory size 11 - 2m per bank = 4m total 10 - 1m per bank = 2m total 0x - 512k per bank = 1m total r29 t_d[8] 1 eeprom installed 0 ? eeprom is installed 1 ? eeprom is not installed r30 t_d[9] 1 mct aging enable 0 ? mct aging disable 1 ? mct aging enable r26 t_d[10] 1 fcb handle aging enable 0 ? fcb handle aging disable 1 ? fcb handle aging enable p27 t_d[11] 1 timeout reset enable 0 ? timeout reset disable 1 ? timeout reset enable issue reset if any state machine did not go back to idle for 5sec. p28,p29 t_d[13:12] reserved ball no(s) symbol i/o description
mvtx2802 data sheet 133 zarlink semiconductor inc. note: # = active low signal input = input signal in-st = input signal with schmitt-trigger output = output signal (tri-state driver) out-od = output signal with open-drain driver i/o-ts = input & output signal with tri-state driver i/o-od = input & output signal with open-drain driver p30 t_d[14] 1 cpu installed 0 - cpu installed. 1 - cpu is not installed. p26 t_d[15] 1 external ram test 0 ? perform the infinite loop of zbt ram bist. debug test only 1 ? regular operation. n30, n29, n28 p_d[2:0] 111 zbt ram la_clk turning 3?b000 - control by reg. lclkcr [2:0] 3?b001 - delay by method # 0 3?b010 - delay by method # 1 3?b011 - delay by method # 2 3?b100 - delay by method # 3 3?b101 - delay by method # 4 3?b110 - delay by method # 5 3?b111 - delay by method # 6 ? use this method m30, m29, m28 p_d[5:3] 111 no use l29, l28, n26 p_d[8:6] 111 sbram b_clk turning 3?b000 - control by bclkcr [2:0] 3?b001 - delay by method # 0 3?b010 - delay by method # 1 3?b011 - delay by method # 2 3?b100 - delay by method # 3 3?b101 - delay by method # 4 3?b110 - delay by method # 5 3?b111 - delay by method # 6? use this method ball no(s) symbol i/o description
mvtx2802 data sheet 134 zarlink semiconductor inc. 12.3 ball signal name ball no. signal name ball no. si gnal name ball no. signal name a1 avdd m1 la_d[34] y2 la_a[13] b1 dev_cfg[0] m2 la_d[35] v4 la_a[14] b2 la_d[0] m3 la_d[36] y1 la_a[15] c2 la_clk k4 la_d[37] aa3 la_a[16] c1 la_d[1] n1 la_d[38] aa2 la_a[17] d1 la_d[2] p5 la_d[39] v5 la_a[18] c3 la_d[3] n2 la_d[40] aa1 la_a[19] e4 la_d[4] l5 la_d[41] w4 la_a[20] d2 la_d[5] n3 la_d[42] y4 g0_crs/link e3 la_d[6] p1 la_d[43] aa4 gref_clk[0] e2 la_d[7] p2 la_d[44] ab4 g0_txclk e1 la_d[8] p3 la_d[45] ab3 g0_txd[0] d3 la_d[9] l4 la_d[46] w5 g0_txd[1] f1 la_d[10] r5 la_d[47] ab2 g0_txd[2] f2 la_d[11] m5 la_d[48] ab1 mii_tx_clk[0] f3 la_d[12] r1 la_d[49] ac3 g0_txd[3] f4 la_d[13] r2 la_d[50] y5 g0_txd[4] f5 la_d[14] r3 la_d[51] ac2 g0_txd[5] g1 la_d[15] r4 la_d[52] ac1 g0_rxclk g2 la_d[16] m4 la_d[53] ad3 g0_col g5 la_d[17] t4 la_d[54] ad4 g0_txd[6] g4 la_d[18] t3 la_d[55] aa5 g0_txd[7] g3 la_d[19] n5 la_d[56] ad2 g0_tx_en h1 la_d[20] t2 la_d[57] ab5 g0_tx_er h2 la_d[21] t1 la_d[58] ad1 g0_rxd[0] h3 la_d[22] u4 la_d[59] ae4 g0_rxd[1] j1 la_d[23] u3 la_d[60] ac4 g0_rxd[2] h5 la_d[24] n4 la_d[61] ae3 g0_rxd[3] j2 la_d[25] u2 la_d[62] ae2 g0_rxd[4] j3 la_d[26] u1 la_d[63] ae1 g0_rxd[5]
mvtx2802 data sheet 135 zarlink semiconductor inc. j4 la_d[27] v3 la_a[3] ac5 g0_rxd[6] k1 la_d[28] p4 la_a[4] af1 g0_rxd[7] h4 la_d[29] v2 la_a[5] ad5 g0_rx_dv k2 la_d[30] v1 la_a[6] af2 g0_rx_er j5 la_d[31] t5 la_a[7] af3 gref_clk[1] k3 la_cs0# w3 la_a[8] ag2 g1_txclk l1 la_cs1# w2 la_a[9] ag3 g1_crs/link l2 la_rw# w1 la_a[10] ae5 g1_txd[0] l3 la_d[32] u5 la_a[11] ag1 g1_txd[1] k5 la_d[33] y3 la_a[12] ah1 g1_txd[2] ah2 g1_txd[3] ag10 g2_rxclk ag19 nc aj2 g1_txd[4] ak10 g2_col ak17 nc aj1 g1_txd[5] aj10 g2_rxd[6] af20 nc ak1 g1_txd[6] ag11 g2_rxd[7] ah18 nc ag4 g1_txd[7] ah10 g2_rx_dv aj18 nc ak2 g1_tx_en ag12 g2_rx_er ak18 nc ah3 mii_tx_clk[1] ak11 g3_crs/link ah19 nc aj3 g1_tx_er aj11 gref_clk[3] aj19 nc ah4 g1_rxd[0] ah11 g3_txclk ak19 nc ak3 g1_rxd[1] ak12 g3_txd[0] ah20 nc af4 g1_rxd[2] af12 g3_txd[1] aj20 nc ak4 g1_rxd[3] aj12 g3_txd[2] af21 nc ah5 g1_rxclk ah12 g3_txd[3] ak20 nc aj4 g1_col ak13 g3_txd[4] ah21 nc ag6 g1_rxd[4] aj13 mii_tx_clk[3] aj21 nc af5 g1_rxd[5] ah13 g3_txd[5] ak21 nc aj5 g1_rxd[6] af13 g3_txd[6] af22 nc af6 g1_rxd[7] ak14 g3_txd[7] ag20 nc ak5 g1_rx_dv ag13 g3_tx_en ag21 nc ak6 g1_rx_er aj14 g3_tx_er ag22 nc aj6 gref_clk[2] ah14 g3_rxclk ah22 nc ball no. signal name ball no. si gnal name ball no. signal name
mvtx2802 data sheet 136 zarlink semiconductor inc. ag5 g2_txclk af14 g3_col aj22 nc ah6 g2_crs/link ag14 g3_rxd[0] ak22 nc af7 g2_txd[0] ak15 cm_clk ah23 nc ak7 g2_txd[1] af17 ind_cm ag23 nc aj7 g2_txd[2] aj15 g3_rxd[1] aj23 nc ag8 g2_txd[3] ah15 g3_rxd[2] ak23 nc ag7 g2_txd[4] af15 g3_rxd[3] af23 nc ah7 mii_tx_clk[2] af18 g3_rxd[4] ah24 nc ak8 g2_txd[5] ag15 g3_rxd[5] af24 nc aj8 g2_txd[6] af16 g3_rxd[6] ag24 nc af8 g2_txd[7] ag16 g3_rxd[7] aj24 nc ah8 g2_tx_en ah16 g3_rx_dv ak24 nc ak9 g2_tx_er af19 g3_rx_er ag25 nc aj9 g2_rxd[0] aj16 m_mdc ah25 nc ah9 g2_rxd[1] ag18 m_mdio af25 nc af9 g2_rxd[2] ak16 nc aj25 nc ag9 g2_rxd[3] ag17 nc ag26 nc af10 g2_rxd[4] ah17 nc ak25 nc af11 g2_rxd[5] aj17 nc ak26 nc aj26 nc aa27 nc p29 t_d[13] ah26 nc ab30 nc p30 t_d[14] aj27 nc ab29 nc p26 t_d[15] af26 nc y26 nc n28 p_d[0] ah27 nc ab28 nc n29 p_d[1] ak27 nc y27 nc n30 p_d[2] ak28 nc ab27 nc m28 p_d[3] aj28 nc aa30 nc m29 p_d[4] aj29 nc aa29 nc m30 p_d[5] ak29 nc aa28 nc n26 p_d[6] ak30 nc y30 nc l28 p_d[7] aj30 nc w27 nc l29 p_d[8] ball no. signal name ball no. si gnal name ball no. signal name
mvtx2802 data sheet 137 zarlink semiconductor inc. ah28 nc y29 nc n27 p_d[9] ah29 nc w26 nc l30 p_d[10] ag27 nc y28 nc k28 p_d[11] ag28 nc w30 nc k29 p_d[12] ah30 nc w29 nc k30 p_d[13] ag30 nc v26 nc l27 p_d[14] af28 nc w28 nc k27 p_d[15] ae26 nc v27 nc m26 p_a[0] ag29 nc v30 led_do j27 p_a[1] af27 nc v29 led_clk0 j28 p_a[2] af29 nc v28 led_synco# j29 p_we# af30 nc u26 s_rst# j30 p_rd# ad26 nc u30 resout# l26 p_cs# ae30 nc u29 t_mode[0] h28 p_int# ac26 nc u28 t_mode[1] m27 b_d[0] ae29 nc t30 t_d[0] h29 b_d[1] ac27 nc t29 t_d[1] h30 b_d[2] ae28 nc t28 t_d[2] g28 b_d[3] ae27 nc u27 t_d[3] g27 b_d[4] ab26 nc t27 t_d[4] k26 b_d[5] ad30 nc r27 t_d[5] g29 b_d[6] ad29 nc t26 t_d[6] g30 b_d[7] ad27 nc r28 t_d[7] h27 b_d[8] ad28 nc r29 t_d[8] f27 b_d[9] ac30 nc r30 t_d[9] f28 b_d[10] aa26 nc r26 t_d[10] f29 b_d[11] ac29 nc p27 t_d[11] f30 b_d[12] ac28 nc p28 t_d[12] j26 b_d[13] e30 b_d[14] a23 b_a[12] e14 nc h26 b_d[15] b23 b_a[13] c15 nc e29 b_d[16] c23 b_a[14] b15 nc ball no. signal name ball no. si gnal name ball no. signal name
mvtx2802 data sheet 138 zarlink semiconductor inc. e26 b_d[17] e22 b_a[15] e13 nc d29 b_d[18] a22 b_a[16] a15 nc e28 b_d[19] b22 b_a[17] d14 nc g26 b_d[20] c22 b_a[18] c14 nc d30 b_d[21] e21 lb_a[20] d13 nc c30 b_d[22] d22 nc b14 nc e27 b_d[23] d20 nc a14 nc c29 b_clk e20 nc c13 nc d28 b_d[24] d21 nc e12 nc b30 b_d[25] a21 nc b13 nc f26 nc1 d19 nc a13 nc d26 nc2 b21 nc d12 nc a30 nc3 c21 nc c12 nc a29 nc4 a20 nc b12 nc b29 nc5 b20 nc a12 nc e25 agnd e19 nc c11 nc b28 dev_cfg[1] c20 nc e11 nc c28 avdd a19 nc b11 nc a28 b_d[26] b19 nc a11 nc a27 b_d[27] e18 nc e10 nc c27 b_d[28] c19 nc c10 nc d27 b_d[29] a18 nc b10 nc b27 b_d[30] d18 nc e9 nc e24 b_d[31] b18 nc a10 nc d25 b_adsc# c18 nc d11 nc b26 b_we# a17 nc d10 nc a26 b_oe# e17 nc d8 nc a25 b_a[2] b17 nc d9 nc b25 b_a[3] c17 nc c9 nc c26 b_a[4] e16 nc b9 nc c25 b_a[5] d17 nc a9 nc ball no. signal name ball no. si gnal name ball no. signal name
mvtx2802 data sheet 139 zarlink semiconductor inc. e23 b_a[6] a16 s_clk c8 nc a24 b_a[7] b16 nc b8 nc b24 b_a[8] e15 nc a8 nc d23 b_a[9] c16 nc c7 nc d24 b_a[10] d16 nc e7 nc c24 b_a[11] d15 nc d7 nc b7 nc p15 vss ae7 vdd e8 nc p16 vss ae9 vdd a7 nc p17 vss f10 vdd d6 nc p18 vss f21 vdd c6 nc r13 vss f22 vdd e6 nc r14 vss f9 vdd b6 nc r15 vss g25 vdd a6 nc r16 vss g6 vdd a5 nc r17 vss j25 vdd b5 nc r18 vss j6 vdd c5 nc r25 vss k25 vdd b4 nc r6 vss k6 vdd d5 nc t13 vss ae12 vcc a4 nc t14 vss ae13 vcc a3 scan_en t15 vss ae14 vcc e5 agnd t16 vss ae17 vcc c4 nc6 t17 vss ae18 vcc b3 nc7 t18 vss ae19 vcc d4 nc8 t25 vss f12 vcc a2 nc9 t6 vss f13 vcc ad6 vss u13 vss f14 vcc ae15 vss u14 vss f17 vcc ae16 vss u15 vss f18 vcc ae24 vss u16 vss f19 vcc ae25 vss u17 vss m25 vcc ball no. signal name ball no. si gnal name ball no. signal name
mvtx2802 data sheet 140 zarlink semiconductor inc. 12.4 characteristics and timing 12.4.1 absolute maximum ratings storage temperature -65c to +150c operating temperature -40c to +85c maximum junction temperature +125c supply voltage vcc with respect to vss +3.0 v to +3.6 v supply voltage vdd with respect to vss +2.38 v to +2.75 v voltage on input pins -0.5 v to (vcc + 3.3 v) caution: stress above those listed may damage the device. exposure to the absolute maximum ratings for extended periods may affect device reliability. functi onality at or above these limits is not implied. 12.4.2 dc electrical characteristics vcc = 3.0 v to 3.6 v (3.3v +/- 10%) t ambient = -40c to +85c vdd = 2.5v +10% - 5% ae6 vss u18 vss m6 vcc f15 vss v13 vss n25 vcc f16 vss v14 vss n6 vcc f24 vss v15 vss p25 vcc f25 vss v16 vss p6 vcc f6 vss v17 vss u25 vcc f7 vss v18 vss u6 vcc n13 vss aa25 vdd v25 vcc n14 vss aa6 vdd v6 vcc n15 vss ab25 vdd w25 vcc n16 vss ab6 vdd w6 vcc n17 vss ad25 vdd n18 vss ae10 vdd p13 vss ae21 vdd p14 vss ae22 vdd ball no. signal name ball no. si gnal name ball no. signal name
mvtx2802 data sheet 141 zarlink semiconductor inc. 12.4.3 recommended operating conditions symbol parameter descri ption min type max unit f osc frequency of operation 133 mhz i cc supply current ? @ 133 mhz (vcc = 3.3v) 680 850 ma i dd supply current ? @ 133 mhz (vdd = 2.5v) 1300 1500 ma v oh output high voltage (cmos) 2.4 v v ol output low voltage (cmos) 0.4 v v ih-ttl input high voltage (ttl 5v tolerant) 2.0 vcc + 2.0 v v il-ttl input low voltage (ttl 5v tolerant) 0.8 v i il input leakage current (0.1 v < v in < vcc) 10 a i ol output leakage current (0.1 v < vout < vcc) 10 a c in input capacitance 5 pf c out output capacitance 5 pf c i/o i/o capacitance 7 pf ja thermal resistance with 0 air flow 11.2 c/w ja thermal resistance with 1 m/s air flow 9.9 c/w ja thermal resistance with 2 m/s air flow 8.7 c/w jc thermal resistance between junction and case 3.3 c/w
mvtx2802 data sheet 142 zarlink semiconductor inc. 12.5 ac characteristics and timing 12.5.1 typical reset & bootstrap timing diagram figure 7 - typical reset & bootstrap timing diagram 12.5.2 typical cpu timing diagram for a cpu write cycle symbol parameter min typ note: r1 delay until resout# is tri-stated 10ns resout# state is then determined by the external pull-up/down resistor r2 bootstrap stabilization 1 s10 s bootstrap pins sampled on rising edge of s_rst# 1 1. the t_d[15:0] pins will switch over to the led inte rface functionality in 3 sclk cycles after s_rst# goes high r3 resout# assertion 2ms table 6 - reset & bootstrap timing description (sclk=133mhz) write cycle symbol min (ns) max (ns) write set up time t ws 10 write active time t wa 15 at least 2 sclk write hold time t wh 2 write recovery time t wr 22.5 at least 3 sclk data set up time t ds 10 data hold time t dh 2 resout# tri-stated s_rst# r1 r2 r3 bootstrap pins inputs outputs outputs
mvtx2802 data sheet 143 zarlink semiconductor inc. figure 8 - typical cpu timing di agram for a cpu write cycle 12.5.3 typical cpu timing diagram for a cpu read cycle figure 9 - typical cpu timing diagram for a cpu read cycle description (sclk=133mhz) p_cs# p_we# data to vtx2600 p_addr t wr hold time addr0 t ws t wa at least 2 sclks set up time data 1 data 0 recovery time addr1 t wh t ws t wa at least 2 sclks t wh t dh t dh t ds t ds p_cs# p_rd# data to cpu p_addr t rr recovery time 2ns inactive time addr0 t rs t dv t ra at least 2 sclks valid time data 1 data 0 at least 3 sclks t di addr1 t rh t rs t ra at least 2 sclks t rh t di t dv
mvtx2802 data sheet 144 zarlink semiconductor inc. read cycle symbol min (ns) max (ns) read set up time t rs 10 read active time t ra 15 at least 2 sclk read hold time t rh 2 read recovery time t rr 22.5 at least 3 sclk data valid time t ds 10 data inactive time t di 2
mvtx2802 data sheet 145 zarlink semiconductor inc. 12.5.4 local frame buffer zbt sram memory interface 12.5.4.1 local zbt sram memory interface a figure 10 - local memory interface ? input setup and hold timing figure 11 - local memory interface - output valid delay timing (sclk= 133mhz) symbol parameter min (ns) max (ns) note: l1 la_d[63:0] input set-up time 2.5 l2 la_d[63:0] input hold time 1 l3 la_d[63:0] output valid delay 3 5 c l = 25pf l4 la_a[20:3] output valid delay 3 5 c l = 30pf l6 la_cs[1:0]# output valid delay 3 5 c l = 30pf l9 la_we# output valid delay 3 5 c l = 25pf table 7 - ac characteristics ? local frame buffer zbt-sram memory interface a l1 l2 la_clk la_d[63:0] l3-min l3-max l4-min l4-max l6-min l6-max l9-min l9-max la_clk la_d[63:0] la_a[20:3] la_cs[1,0]# la_rw#
mvtx2802 data sheet 146 zarlink semiconductor inc. 12.5.5 local switch database sbram memory interface 12.5.5.1 local s bram memory interface figure 12 - local memory interface ? input setup and hold timing figure 13 - local memory interface - output valid delay timing (sclk= 133mhz) symbol parameter min (ns) max (ns) note: l1 b_d[31:0] input set-up time 2.5 l2 b_d[31:0] input hold time 1 l3 b_d[31:0] output valid delay 3 5 c l = 25pf l4 b_a[18:2] output valid delay 3 5 c l = 30pf l6 b_adsc# output valid delay 3 5 c l = 30pf l10 b_we# output valid delay 3 5 c l = 25pf l11 b_oe# output valid delay 3 4 c l = 25pf table 8 - ac characteristics ? local switch database sbram memory interface l1 l2 b_clk b_d[31:0] l3-min l3-max l4-min l4-max l6-min l6-max l10-min l10-max l11-min l11-max b_clk b_d[31:0] b_a[18:2] b_adsc# b_we# b_oe#
mvtx2802 data sheet 147 zarlink semiconductor inc. 12.5.6 media independent interface figure 14 - ac characteristics ? media independent interface figure 15 - ac characteristics ? media independent interface (mii_txclk & g_rxclk = 25mhz) symbol parameter min (ns) max (ns) note: m2 g[3:0]_rxd[3:0] input setup time 4 m3 g[3:0]_rxd[3:0] input hold time 1 m4 g[3:0]_crs_dv input setup time 4 m5 g[3:0]_crs_dv input hold time 1 m6 g[3:0]_txen output delay time 3 11 c l = 20 pf m7 g[3:0]_txd[3:0] output delay time 3 11 c l = 20 pf table 9 - ac characteristics ? media independent interface m6-min m6-max m7-min m7-max mii_txclk[3:0] g[3:0]_txen g[3:0] _txd[3:0] m2 g[3:0]_rxclk g[3:0]_rxd[3:0] g[3:0]_crs_dv m3 m4 m5
mvtx2802 data sheet 148 zarlink semiconductor inc. 12.5.7 gigabit media independent interface figure 16 - ac characteristics- gmii figure 17 - ac characteristics ? gi gabit media independent interface (g_rclk & g_refclk = 125mhz) symbol parameter min (ns) max (ns) note: g1 g[3:0 ]_rxd[7:0] input setup times 2 g2 g[3:0 ]_rxd[7:0] inpu t hold times 1 g3 g[3:0 ]_rx_dv input setup times 2 g4 g[3:0 ]_rx_dv input hold times 1 g5 g[3:0 ]_rx_er input setup times 2 g6 g[3:0 ]_rx_er input hold times 1 table 10 - ac characteristics ? gigabit media independent interface g12-min g12-max g13-min g13-max g14-min g14-max g[3:0]_txclk g[3:0]_txd[7:0] g[3:0]_tx_en g[3:0]_tx_er g[7:0]_rxclk g1 g2 g[7:0]_rxd[7:0] g3 g4 g[7:0]_rx_dv g5 g6 g[7:0]_rx_er g7 g8 g [ 7:0 ]_ rx _ crs g[3:0]_ g[3:0] g[3:0] g[3:0] g[3:0]
mvtx2802 data sheet 149 zarlink semiconductor inc. 12.5.8 pcs interface figure 18 - ac characteristics ? pcs interface figure 19 - ac characteristics ? pcs interface g7 g[3:0 ]_crs input setup times 2 g8 g[3:0 ]_crs input hold times 1 g12 g[3:0 ]_txd[7:0] output delay times 1 5 c l = 20pf g13 g[3:0 ]_tx_en output delay times 1 5 c l = 20pf g14 g[3:0 ]_tx_er output delay times 1 5 c l = 20pf (g_rclk & g_refclk = 125mhz) symbol parameter min (ns) max (ns) note: g21 g[3:0 ]_rxd[9:0] input setup times ref to g_rxclk 2 g22 g[3:0 ]_rxd[9:0] input ho ld times ref to g_rxclk 1 g23 g[3:0 ]_rxd[9:0] input setup times ref to g_rxclk1 2 g24 g[3:0 ]_rxd[9:0] input ho ld times ref to g_rxclk1 1 figure 20 - ac characteristics ? pcs interface table 10 - ac characteristics ? gigabit media independent interface (continued) g30-min g30-max g[3:0]_txclk g[3:0]_txd[9:0] g[3:0] g[3:0] g[3:0] g[3:0]
mvtx2802 data sheet 150 zarlink semiconductor inc. 12.5.9 led interface figure 21 - ac characteristics ? led interface 12.5.10 mdio input setup and hold timing figure 22 - mdio input setup and hold timing figure 23 - mdio output delay timing g25 g[3:0 ]_crs input setup times 2 g26 g[3:0 ]_crs input hold times 1 g30 g[3:0 ]_txd[9:0] output delay times 1 5 c l = 20pf variable freq. symbol parameter min (ns) max (ns) note: le5 led_syn output valid delay 1 7 c l = 30pf le6 led_bit output valid delay 1 7 c l = 30pf table 11 - ac characteristics ? led interface figure 20 - ac characteristics ? pcs interface (continued) le5-min le5-max le6-min le6-max led_clk led_syn led_bit mdc d1 d2 mdio d3-min d3-max mdc mdio
mvtx2802 data sheet 151 zarlink semiconductor inc. 12.5.11 i 2 c input setup timing figure 24 - i 2 c input setup timing figure 25 - i 2 c output delay timing 1mhz symbol parameter min (ns) max (ns) note: d1 mdio input setup time 10 d2 mdio input hold time 2 d3 mdio output delay time 1 20 c l = 50pf table 12 - mdio timing 500khz symbol parameter min (ns) max (ns) note: s1 sda input setup time 20 s2 sda input hold time 1 s3* sda output delay time 1 20 c l = 30pf * open drain output. low to high transistor is controlled by external pullup resistor. table 13 - i 2 c timing scl s1 s2 sda s3-min s3-max scl sda
mvtx2802 data sheet 152 zarlink semiconductor inc. 12.5.12 serial interface setup timing figure 26 - serial interface setup timing figure 27 - serial interface output delay timing (sclk =133 mhz) symbol parameter min (ns) max (ns) note: d1 ps_di setup time 20 d2 ps_di hold time 10 d3 ps_do output delay time 1 50 c l = 100pf d4 strobe low time 5 s d5 strobe high time 5 s table 14 - serial interface timing strobe d1 d2 ps_di d1 d2 d4 d5 d3-min d3-max strobe ps_do
apprd. issue date acn package code previous package codes: conforms to jedec ms - 034 e b e e1 a2 d d1 a a1 40.20 39.80 34.50 ref 596 1.27 0.60 0.90 34.50 ref 1.17 ref 39.80 min 0.50 2.20 40.20 2.46 0.70 max 6. substrate thickness is 0.56 mm 4. n is the number of solder balls 2. dimension "b" is measured at the maximum solder ball diameter 1. controlling dimensions are in mm 5. not to scale. note: d e e1 d1 e a a1 a2 b 3. seating plane is defined by the spherical crowns of the solder balls.
www.zarlink.com information relating to products and services furnished herein by zarlink semiconductor inc. or its subsidiaries (collectively ?zarlink?) is believed to be reliable. however, zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from t he application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. neither the supply of such information or purchase of product or service conveys any license, either express or implied, u nder patents or other intellectual property rights owned by zarlink or licensed from third parties by zarlink, whatsoever. purchasers of products are also hereby notified that the use of product in certain ways or in combination with zarlink, or non-zarlink furnished goods or services may infringe patents or other intellect ual property rights owned by zarlink. this publication is issued to provide information only and (unless agreed by zarlink in writing) may not be used, applied or re produced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. the products, t heir specifications, services and other information appearing in this publication are subject to change by zarlink without notice. no warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. it is the user?s responsibility t o fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not b een superseded. manufacturing does not necessarily include testing of all functions or parameters. these products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. all products and materials are sold and services provided subject to zarlink?s conditi ons of sale which are available on request. purchase of zarlink?s i 2 c components conveys a licence under the philips i 2 c patent rights to use these components in and i 2 c system, provided that the system conforms to the i 2 c standard specification as defined by philips. zarlink, zl and the zarlink semiconductor logo are trademarks of zarlink semiconductor inc. copyright zarlink semiconductor inc. all rights reserved. technical documentation - not for resale for more information about all zarlink products visit our web site at


▲Up To Search▲   

 
Price & Availability of MVTX2802A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X