![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
april 2011 doc id 17351 rev 1 1/18 18 RHF484 rad-hard precision quad operational amplifier features high radiation immunity: 300 krad tid at high dose rate eldrs-free up to 100 krad 300 krad low dose rate on-going sel immune at let = 120 mev.cm2/mg at 125c set characterized hermetic package rail-to-rail input/output 8 mhz gain bandwidth product low input offset voltage: 60 v typ supply current: 2.2 ma typ per amplifier operating from 4 to 14 v input bias current: 6 na typ qlm-v qualified under smd 5962-08222 applications space probes and satellites harsh environment description the RHF484 is a rail-to-ra il precision bipolar quad operational amplifier featuring a low input offset voltage and a wide supply voltage. designed to increase tolerance to radiation, the RHF484 is housed in a hermetic 14-pin flat package, making it an ideal product for space applications and harsh environments. note: contact your st sales office for information on specific conditions for products in die form. ceramic flat-14w pin connections (top view) the upper metallic lid is not electrically connected to any pins, nor to the ic die inside the package table 1. device summary reference smd pin quality level temp range package lead finish mass eppl RHF484k1 engineering model -55c to +125c flat-14 w gold 0.70 g - RHF484k-01v 5962f08222 flight model - www.st.com www.datasheet.net/ datasheet pdf - http://www..co.kr/
absolute maximum ratings and operating conditions RHF484 2/18 doc id 17351 rev 1 1 absolute maximum ratings and operating conditions table 2. absolute maximum ratings symbol parameter value unit v cc supply voltage (+v cc )-(-v cc )18v v id differential input voltage (1) 1. the differential voltage is the voltage differenc e between the pins +in and -in of a channel. 1.2 v v in input voltage (2)(3) 2. all voltage values, except differential volt age are with respect to network ground terminal. 3. the voltage on either input must never exceed +v cc +0.3 v nor 16 v. -v cc -0.3v to +v cc +0.3v v i in input current 45 ma t stg storage temperature range -65 to +150 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient (4) flat package, 14 pins 4. short-circuits can c ause excessive heating and destructive dissipation. val ues are typical. tbd c/w r thjc thermal resistance junction to case (4) flat package, 14 pins tbd c/w esd hbm: human body model (5) 5. human body model: a 100 pf capacit or is charged to the specified voltage, then discharged through a 1.5 k resistor between two pins of the device. this is done for all couples of connected pin combinations while the other pins are floating. 2kv t lead lead temperature (soldering, 10 sec) 260 c radiation informations dose low dose rate of 0.01 rad.sec -1 100 krad high dose rate of 50-300 rad.sec -1 300 krad heavy ions sel immunity (at 125c) 120 mev.cm 2 /mg set characterized table 3. operating conditions symbol parameter value unit (+v cc )-(-v cc ) supply voltage 4 to 14 (1) 1. sel-free, up to 120 mev.cm2/mg. v v icm common-mode input voltage range -v cc to +v cc v t oper operating free-air temperature range -55 to +125 c www.datasheet.net/ datasheet pdf - http://www..co.kr/ RHF484 electrical characteristics doc id 17351 rev 1 3/18 2 electrical characteristics table 4. +v cc = 7 v, -v cc = 7 v, v icm = 0 v, t amb = 25c, loads (r l ,c l ) connected to gnd (unless otherwise specified) symbol parameter test conditions temp. min. typ. max. unit dc performance v io offset voltage vicm = +7 v -55c 700 v +25c 500 +125c 700 vicm = +0 v -55c 500 +25c 60 300 +125c 500 vicm = -7 v -55c 700 +25c 500 +125c 700 dv io input offset voltage drift no load 1 v/c i ib input bias current no load -55c 100 na +25c 6 60 +125c 100 di ib input offset current temp. drift no load 100 pa/c i io input offset current no load v out =0 v -55c 35 na +25c 2 15 +125c 35 c in differential input capacitance between +in and -in +25c 8 pf input capacitance between +in (or -in) and gnd +25c 2 i cc supply current per amplifier no load -55c 2.9 ma +25c 2.2 2.9 +125c 2.9 cmr common mode rejection ratio no load -v cc < vicm < +v cc -55c 72 db +25c 72 105 +125c 72 svr supply rejection ratio no load from +v cc = 2 v and -v cc = -2 v to +v cc = 7 v and -v cc = -7 v -55c 80 db +25c 90 120 +125c 80 www.datasheet.net/ datasheet pdf - http://www..co.kr/ electrical characteristics RHF484 4/18 doc id 17351 rev 1 ac performance gbp gain bandwidth product vout = 200 mvpp f = 100 khz r l =1 k , c l = 100 pf -55c 3.5 mhz +25c 6 8 +125c 3.5 f u unity gain frequency r l = 1 k , c l = 100 pf +25c 5 mhz m phase margin r l = 1 k , c l = 100 pf g = +5 +25c 50 degrees a vd large signal voltage gain r l = 10 k v out = -6.5 v to 6 v -55c 60 db +25c 74 85 +125c 60 sr slew rate r l = 1 k vout = -4.8 v to 4.8 v vout = 4.8 v to -4.8 v -55c 1.7 v/s +25c 2 3.5 +125c 1.7 e n equivalent input noise voltage no load, f = 1khz +25c 7 i n equivalent input noise current no load, f = 1 khz +25c 0.8 thd+e n total harmonic distortion + noise v out = 13 vpp, r l = 1 k , c l = 100 pf g = -5.1 +25c 0.01 % output characteristics v oh high level output voltage +v cc =14 v, -v cc = 0 v r l =1 k -55c 13.5 v +25c 13.6 13.8 +125c 13.5 +v cc =14 v, -v cc = 0 v r l = 10 k -55c 13.6 v +25c 13.8 13.9 +125c 13.6 v ol low level output voltage +v cc =14 v, -v cc = 0 v r l =1 k -55c 0.3 v +25c 0.12 0.2 +125c 0.3 +v cc =14 v, -v cc = 0 v r l = 10 k -55c 0.2 v +25c 0.04 0.08 +125c 0.2 table 4. +v cc = 7 v, -v cc = 7 v, v icm = 0 v, t amb = 25c, loads (r l ,c l ) connected to gnd (unless otherwise specified) (continued) symbol parameter test conditions temp. min. typ. max. unit nv hz ----------- - p a hz ----------- - www.datasheet.net/ datasheet pdf - http://www..co.kr/ RHF484 electrical characteristics doc id 17351 rev 1 5/18 i out (1) output sink current v out = + v cc no load, vid = -1 v -55c 15 ma +25c 20 35 +125c 15 output source current v out = -v cc no load, vid = +1 v -55c 10 ma +25c 15 30 +125c 10 1. these tests are performed during a very short period of ti me. excessive heating can damage the device. in the application, the junction temperature must never exceed 150 c as specified in table 2 . table 4. +v cc = 7 v, -v cc = 7 v, v icm = 0 v, t amb = 25c, loads (r l ,c l ) connected to gnd (unless otherwise specified) (continued) symbol parameter test conditions temp. min. typ. max. unit www.datasheet.net/ datasheet pdf - http://www..co.kr/ electrical characteristics RHF484 6/18 doc id 17351 rev 1 table 5. +v cc = +2 v, -v cc = -2 v, v icm = 0 v, t amb = 25c, loads (r l ,c l ) connected to gnd (unless otherwise specified) symbol parameter test conditions temp. min. typ. max. unit dc performance v io offset voltage vicm = +2 v -55c 700 v +25c 500 +125c 700 vicm = +0 v -55c 500 +25c 60 300 +125c 500 vicm = -2 v -55c 700 +25c 500 +125c 700 dv io input offset voltage drift no load 1 v/c i ib input bias current no load -55c 100 na +25c 11 60 +125c 100 di ib input offset current temp. drift no load 100 pa/c i io input offset current no load v out =0 v -55c 35 na +25c 2 15 +125c 35 c in differential input capacitance between +in and -in +25c 8 pf input capacitance between +in (or -in) and gnd +25c 2 i cc supply current per amplifier no load -55c 2.6 ma +25c 2 2.6 +125c 2.6 cmr common mode rejection ratio no load -v cc < vicm < +v cc -55c 72 db +25c 72 95 +125c 72 www.datasheet.net/ datasheet pdf - http://www..co.kr/ RHF484 electrical characteristics doc id 17351 rev 1 7/18 ac performance gbp gain bandwidth product v out = 200 mvpp f = 100 khz r l =1 k , c l = 100 pf -55c 3.5 mhz +25c 6 8 +125c 3.5 f u unity gain frequency r l =1 k , c l = 100 pf +25c 5 mhz m phase margin r l =1 k , c l = 100 pf g = +5 +25c 50 degrees a vd large signal voltage gain r l = 10 k v out = -1.5 v to 0.5 v -55c 60 db +25c 70 80 +125c 60 sr slew rate r l = 1 k v out = -1.28 v to 1.28 v v out = 1.28 v to -1.28 v -55c 1.7 v/s +25c 2 3.1 +125c 1.7 e n equivalent input noise voltage no load, f = 1 khz +25c 7.5 i n equivalent input noise current no load, f = 1 khz +25c 0.8 thd+e n total harmonic distortion + noise v out = 3 vpp, r l = 1 k , c l = 100 pf g = -5.1 +25c 0.01 % output characteristics v oh high level output voltage +v cc = 4 v, -v cc = 0 v r l =1 k -55c 3.75 v +25c 3.8 3.9 +125c 3.75 +v cc = 4 v, -v cc = 0 v r l = 10 k -55c 3.75 v +25c 3.85 3.95 +125c 3.75 v ol low level output voltage +v cc = 4 v, -v cc = 0 v r l =1 k -55c 0.2 v +25c 0.05 0.1 +125c 0.2 +v cc = 4 v, -v cc = 0 v r l = 10 k -55c 0.1 v +25c 0.03 0.07 +125c 0.1 table 5. +v cc = +2 v, -v cc = -2 v, v icm = 0 v, t amb = 25c, loads (r l ,c l ) connected to gnd (unless otherwise specified) (continued) symbol parameter test conditions temp. min. typ. max. unit nv hz ----------- - p a hz ----------- - www.datasheet.net/ datasheet pdf - http://www..co.kr/ electrical characteristics RHF484 8/18 doc id 17351 rev 1 i out (1) output sink current v out = + v cc no load vid = -1 v -55c 15 ma +25c 20 35 +125c 15 output source current v out = -v cc no load vid = +1 v -55c 10 ma +25c 15 30 +125c 10 1. these tests are performed during a very short period of ti me. excessive heating can damage the device. in the application, the junction temperature must never exceed 150 c as specified in table 2 . table 5. +v cc = +2 v, -v cc = -2 v, v icm = 0 v, t amb = 25c, loads (r l ,c l ) connected to gnd (unless otherwise specified) (continued) symbol parameter test conditions temp. min. typ. max. unit www.datasheet.net/ datasheet pdf - http://www..co.kr/ RHF484 electrical characteristics doc id 17351 rev 1 9/18 figure 1. input offset voltage distribution figur e 2. input bias current vs. supply voltage -300 -200 -100 0 100 200 300 0 5 10 15 20 25 30 vio distribution t=25c vcc=14v, vicm=7v population % input offset voltage (uv) 4 456 678 8910 10 11 12 12 13 14 14 -40 -20 0 20 40 t=-55c v icm =v cc /2 follower configuration t=125c t=25c input bias current (na) supply voltage (v) figure 3. input bias current vs. vicm at v cc =4v figure 4. input bias current vs. vicm at v cc =14v -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -vcc = -2v +vcc = +2v t= +125c t= +25c t= -55c input bias current ( a) input common mode voltage (v) -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -vcc = -7v +vcc = 7v t= +125c t= +25c t= -55c input bias current ( a) input common mode voltage (v) figure 5. supply current vs. vicm in follower configuration at v cc =4v figure 6. supply current vs. vicm in follower configuration at v cc =14v -2 -2 -1 -1 0 01 12 2 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 t=-55c follower configuration -vcc=-2v +vcc=+2v t=125c t=25c supply current per channel (ma) input common mode voltage (v) -7 -6 -6 -5 -4 -4 -3 -2 -2 -1 0 012 234 456 67 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 4.5 4.5 t=-55c follower configuration -vcc=-7v +vcc=+7v t=125c t=25c supply current per channel (ma) input common mode voltage (v) www.datasheet.net/ datasheet pdf - http://www..co.kr/ electrical characteristics RHF484 10/18 doc id 17351 rev 1 figure 7. supply current vs. supply voltage at v icm =v cc /2 figure 8. output current vs. supply voltage at v icm = v cc /2 0 02 24 46 68 810 10 12 12 14 14 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 t=-55c vicm=vcc/2 t=125c t=25c supply current per channel (ma) supply voltage (v) 4.0 4.0 6.0 6.0 8.0 8.0 10.0 10.0 12.0 12.0 14.0 14.0 -50 -45 -40 -40 -35 -30 -25 -20 -20 -15 -10 -5 0 0 5 10 15 20 20 25 30 35 40 40 45 50 t=125c t=25c t=-55c sink vid = -1v source vid = 1v t=-55c t=25c t=125c vicm=vcc/2 output current (ma) supply voltage (v) figure 9. output current vs. output voltage at v cc = 4 v figure 10. output current vs. output voltage at v cc = 14 v -2.0 -2.0 -1.5 -1.0 -1.0 -0.5 0.0 0.0 0.5 1.0 1.0 1.5 2.0 2.0 -50 -50 -40 -40 -30 -30 -20 -20 -10 -10 0 0 10 10 20 20 30 30 40 40 50 50 source sink t=-55c t=25c t=125c t=-55c +vcc=2v -vcc=-2v t=25c output current (ma) output voltage (v) -7 -6 -6 -5 -4 -4 -3 -2 -2 -1 0 012 234 456 67 -50 -40 -40 -30 -20 -20 -10 0 0 10 20 20 30 40 40 50 -vcc=-7v +vcc=+7v source sink t=-55c t=25c t=125c t=-55c t=125c t=25c output current (ma) output voltage (v) figure 11. differential input voltage vs. output voltage at v cc =4v figure 12. differential input voltage vs. output voltage at v cc = 14 v -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.0 -0.5 0.0 0.5 t=-55c -vcc=-2v +vcc=+2v t=125c t=25c differential input voltage (mv) output voltage (v) -6-5-4-3-2-10123456 -4 -3 -2 -1 0 1 t=-55c -vcc=-7v +vcc=+7v t=125c t=25c differential input voltage (mv) output voltage (v) www.datasheet.net/ datasheet pdf - http://www..co.kr/ RHF484 electrical characteristics doc id 17351 rev 1 11/18 figure 13. noise vs. frequency at v cc = 4 v and v cc = 14 v figure 14. voltage gain and phase vs. frequency at v cc = 4 v, vicm = 2 v 100 1000 10000 10 vcc=14v, vicm=7v, tamb=25c vcc=4v, vicm=2v, tamb=25c input equivalent noise density (nv/vhz) frequency (hz) 10 4 10 5 10 6 10 7 -50 -40 -40 -30 -20 -20 -10 0 0 10 20 20 30 40 40 50 -180 -150 -150 -120 -120 -90 -90 -60 -60 -30 -30 0 30 30 60 60 90 90 120 120 150 150 180 phase vcc=4v, vicm=2v, g= -100 rl=1kohms, cl=100pf, vrl=vcc/2 tamb=25c gain gain (db) frequency (hz) phase () figure 15. voltage gain and phase vs. frequency at v cc = 4 v, vicm = 3.5 v figure 16. voltage gain and phase vs. frequency at v cc = 4 v, vicm = 0.5 v 10 4 10 5 10 6 10 7 -50 -40 -40 -30 -20 -20 -10 0 0 10 20 20 30 40 40 50 -180 -150 -150 -120 -120 -90 -90 -60 -60 -30 -30 0 30 30 60 60 90 90 120 120 150 150 180 phase vcc=4v, vicm=3.5v, g= -100 rl=1kohms, cl=100pf, vrl=vcc/2 tamb=25c gain gain (db) frequency (hz) phase () 10 4 10 5 10 6 10 7 -50 -40 -40 -30 -20 -20 -10 0 0 10 20 20 30 40 40 50 -180 -150 -150 -120 -120 -90 -90 -60 -60 -30 -30 0 30 30 60 60 90 90 120 120 150 150 180 phase vcc=4v, vicm=0.5v, g= -100 rl=1kohms, cl=100pf, vrl=vcc/2 tamb=25c gain gain (db) frequency (hz) phase () figure 17. voltage gain and phase vs. frequency at v cc = 14 v, vicm = 7 v figure 18. voltage gain and phase vs. frequency at v cc = 14 v, vicm = 13.5 v 10 4 10 5 10 6 10 7 -50 -40 -40 -30 -20 -20 -10 0 0 10 20 20 30 40 40 50 -180 -150 -150 -120 -120 -90 -90 -60 -60 -30 -30 0 30 30 60 60 90 90 120 120 150 150 180 phase vcc=14v, vicm=7v, g= -100 rl=1kohms, cl=100pf, vrl=vcc/2 tamb=25c gain gain (db) frequency (hz) phase () 10 4 10 5 10 6 10 7 -50 -40 -40 -30 -20 -20 -10 0 0 10 20 20 30 40 40 50 -180 -150 -150 -120 -120 -90 -90 -60 -60 -30 -30 0 30 30 60 60 90 90 120 120 150 150 180 phase vcc=14v, vicm=13.5v, g= -100 rl=1kohms, cl=100pf, vrl=vcc/2 tamb=25c gain gain (db) frequency (hz) phase () www.datasheet.net/ datasheet pdf - http://www..co.kr/ electrical characteristics RHF484 12/18 doc id 17351 rev 1 figure 19. voltage gain and phase vs. frequency at v cc = 14 v, vicm = 0.5 v figure 20. positive slew rate at v cc = 4 v 10 4 10 5 10 6 10 7 -50 -40 -40 -30 -20 -20 -10 0 0 10 20 20 30 40 40 50 -180 -150 -150 -120 -120 -90 -90 -60 -60 -30 -30 0 30 30 60 60 90 90 120 120 150 150 180 phase vcc=14v, vicm=0.5v, g= -100 rl=1kohms, cl=100pf, vrl=vcc/2 tamb=25c gain gain (db) frequency (hz) phase () 0.0 1.0 1.0 2.0 3.0 3.0 4.0 -5 -4 -4 -3 -2 -2 -1 0 0 1 2 2 3 4 4 5 vcc=4v, vin=2vpp, g= -5.1 output voltage (v)) time (s) figure 21. negative slew rate at v cc = 4 v figure 22. positive slew rate at v cc = 14 v figure 23. negative slew rate at v cc = 14 v 0.0 1.0 1.0 2.0 3.0 3.0 4.0 -5 -4 -4 -3 -2 -2 -1 0 0 1 2 2 3 4 4 5 vcc=4v, vin=2vpp, g= -5.1 output voltage (v)) time (s) 0.0 1.0 1.0 2.0 3.0 3.0 4.0 5.0 5.0 6.0 7.0 7.0 -10 -10 -8 -8 -6 -6 -4 -4 -2 -2 0 0 2 2 4 4 6 6 8 8 10 10 vcc=14v, vin=4vpp, g= -5.1 output voltage (v)) time (s) 0.0 1.0 1.0 2.0 3.0 3.0 4.0 5.0 5.0 6.0 7.0 7.0 -10 -10 -8 -8 -6 -6 -4 -4 -2 -2 0 0 2 2 4 4 6 6 8 8 10 10 vcc=14v, vin=4vpp, g= -5.1 output voltage (v)) time (s) www.datasheet.net/ datasheet pdf - http://www..co.kr/ RHF484 achieving good stability at low gain doc id 17351 rev 1 13/18 3 achieving good stability at low gain at low frequencies, the RHF484 can be used in a low gain configuration as shown in figure 24 . at lower frequencies, the stability is not affected by the value of the gain, which can be set close to 1 v/v (0 db), and is reduced to its simplest expression g1=1+rfb/rg. therefore, an r-c cell is added in the gain network so that the gain is increased (up to 5) at higher frequencies (where the stability of the amp lifier could be affected). at higher frequencies, the gain becomes g2=1+rfb/(rg//r). rg becomes a complex impedance. the closed-loop gain features a variation in frequency and can be expressed as: where a pole appears at 1/2 rc and a zero at g1/2 (g1r+rfb)c. the frequency can be plotted as shown in figure 25 . figure 24. low gain configuration figure 25. closed-loop gain 2 g 6 # # 2 f b k 2 , k 6 $ $ # , p & 6 i n 6 o u t # 2 ! - , o g f r e q u e n c y ' a i n d " d " d e c d " d e c ' 2 f b 2 g 2 ' 2 f b 2 g d " " a n d w i d t h o f t h e o p a m p a t ' ' a i n b a n d w i d t h p r o d u c t ' ' 2 2 f b # 5 & $ 9 ' & |