Part Number Hot Search : 
B04N03 16NBS PNZ323B 2SC4813 331MH NJW1136 DM1602A 13200
Product Description
Full Text Search
 

To Download 5962G-0153401VXC Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 features ? 15 to 75 mhz shift clock support ? low power consumption ? power-down mode <216 w (max) ? cold sparing all pins ? narrow bus reduces cable size and cost ? up to 1.575 gbps throughput ? up to 197 megabytes/sec bandwidth ? 325 mv (typ) swing lvds devices for low emi ? pll requires no external components ? rising edge strobe ? operational environment; total dose irradiation testing to mil-std-883 method 1019 - total-dose: 300 krad(si) and 1 mrad(si) - latchup immune (let > 100 mev-cm 2 /mg) ? packaging options: - 48-lead flatpack ? standard microcircuit drawing 5962-01534 - qml q and v compliant part introduction the ut54lvds217 serializer converts 21 bits of cmos/ttl data into three lvds (low voltage differential signaling) data streams. a phase-locked transmit cl ock is transmitted in parallel with the data streams over a f ourth lvds link. every cycle of the transmit clock 21 bits of input data are sampled and transmitted. at a transmit clock frequency of 75mhz, 21 bits of ttl data are transmitted at a rate of 525 mbps per lvds data channel. using a 75mhz clock, the data throughput is 1.575 gbit/s (197 mbytes/sec). the ut54lvds217 serializer a llows the use of wide, high speed ttl interfaces while reduc ing overall emi and cable size. all pins have cold spare buffer s. these buffers will be high impedance when v dd is tied to v ss . standard products ut54lvds217 serializer data sheet october 27, 2010 ttl parallel-to-lvds pll power down transmit clock in cmos/ttl inputs 21 data (lvds) clock (lvds) ttl parallel -to-lvds figure 1. ut54lvds217 serializer block diagram
pin description figure 2. ut54lvds217 pinout ut54lvds217 48 47 46 45 44 43 42 41 n/c lvds gnd 1 txin4 2 v dd 3 4 5 gnd 6 7 8 v dd 9 10 11 12 13 14 15 16 txin6 txin5 txin7 txin8 txin9 txin10 gnd txin11 txin12 v dd txin13 txin14 17 18 19 20 21 22 23 24 txin15 txin17 txin16 v dd txin19 txin18 gnd gnd txin3 txin2 gnd txin1 txin0 txout0- 40 39 38 37 36 35 34 33 txout0+ txout1- lvds gnd txclk out- txout1+ txout2- lvds v dd txout2+ 32 31 30 29 28 27 26 25 pwr dwn txclk in txin20 txclk out+ lvds gnd pll gnd pll v dd pll gnd pin name i/o no. description txin i 21 ttl level input txout+ o 3 positive lvds differential data output txout- o 3 negative lvds differential data output txclk in i 1 ttl level clock input. the rising edge acts as data strobe. pin name txclk in txclk out+ o1 positive lvds differ ential clock output txclk out- o 1 negative lvds differential clock output pwr dwn i1 ttl level input. assertion (low input) tri- states the clock and data outputs, ensur- ing low current at power down. v dd i4 power supply pins for ttl inputs and logic gnd i 5 ground pins for ttl inputs and logic pll v dd i1 power supply pins for pll pll gnd i 2 ground pins for ppl lvd s v dd i1 power supply pin for lvds output lvd s gnd i 3 ground pins for lvds outputs txin ut54lvds217 0 1 2 cmos/ ttl 18 19 20 txclk pcb rxout ut54lvds218 0 1 2 18 19 20 rxclk pcb shield gnd clock (lvds) data (lvds) lvds cable media dependent figure 3. ut54lvds217 typical application
3 operational environment notes: 1. guarnteed but not tested. absolute maximum ratings 1 (referenced to v ss ) notes: 1. stresses outside the listed absolute maxi mum ratings may cause permanent damage to the device. this is a stress rating only, and functional operation of the device at these or any other conditions beyond limit s indicated in the operationa l sections of this specific ation is not recommended. exposure to absolu te maximum rating conditions for extended periods may af fect device reliability and performance. 2. maximum junction temperature may be increased to +175 c during burn-in and lifetest. 3. test per mil-std-883, method 1012. 4. for cold spare mode (v dd = v ss ), v i/o may be 0.3v to the maximum recommended operating v dd + 0.3v. recommended operating conditions parameter limit units total ionizing dose (tid) 1.0e6 rad(si) single event latchup (sel) >100 mev-cm 2 /mg neutron fluence 1 1.0e13 n/cm 2 symbol parameter limits v dd dc supply voltage -0.3 to 4.0v v i/o voltage on any pin 4 -0.3 to (v dd + 0.3v) t stg storage temperature -65 to +150 c p d maximum power dissipation 2 w t j maximum junction temperature 2 +150 c jc thermal resistance, junction-to-case 3 10 c/w i i dc input current 10ma symbol parameter limits v dd, p ll v dd, lvds v dd positive supply voltage 3.0 to 3.6v t c case temperature range -55 to +125 c v in dc input voltage 0v to v dd
4 dc electrical characteristics* 1 (v dd = 3.3v-0.3v; -55 c < t c < +125 c); unless otherwise noted, tc is per the temperature noted. notes: * for devices procured with a total ionizi ng dose tolerance guarantee, the post-irra diation performance is guaranteed at 25 o c per mil-std-883 method 1019, condition a up to the maximum tid level procured. 1. current into device pins is defined as positive. current out of device pins is defined as ne gative. all voltages are referen ced to ground. 2. output short circuit current (i os ) is specified as magnitude only, minus sign indicates direction on ly. only one output should be shorted at a time, for a maxim um duration of one second. 3. guaranteed by characterization. 4. devices are tested @ 3.6v only. 5. clock outputs guaranteed by design. 6. post 100krad and 300krad, i ccz = 200 a. symbol parameter condition min max unit cmos/ttl dc specifications v ih high-level input voltage 2.0 v dd v v il low-level input voltage gnd 0.8 v i ih high-level input current v in = 3.6v; v dd = 3.6v -10 +10 a i il low-level input current v in = 0v; v dd = 3.6v -10 +10 a v cl input clamp voltage i cl = -18ma -1.5 v i cs cold spare leakage current v in = 3.6v; v dd = v ss -20 +20 a lvds output dc specifications (out+, out-) v od 5 differential output voltage r l = 100 (see figure 14) 250 400 mv v od 5 change in v od between complimentary output states r l = 100 (see figure 14) 35 mv v os 5 offset voltage r l = 100 , 1.120 1.410 v v os 5 change in v os between complimentary output states r l = 100 35 mv i oz 4 output three-state current pwr dwn = 0v v out = 0v or v dd -10 +10 ? i csout cold spare leakage current v in =3.6v, v dd = v ss -20 +20 ? i os 2,3 output short circuit current v out + or v out - = 0v 5ma ma supply current i ccl 4 transmitter supply current with loads r l = 100 all channels (figure 5) cl = 5pf, f = 50mhz 65.0 ma i ccz 4,6 power down current d in = v ss pwr dwn = 0v, f = 0hz 60.0 a vos voh vol + 2 -------------------------- - = ?? ??
ac switching characteristics* 1 (v dd = 3.0v to 3.6v; tc = -55 c to +125 c); unless otherwise noted, tc is per the temperature ordered. notes: * for devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25 o c per mil-std-883 me thod 1019, condition a up to the maximum tid level procured. 1. recommend transistion time for txclk in is 1.0 to 6.0 ns (figure 6). 2. guaranteed by characterization. 3. channel to channel skew is defined as the diff erence between tppos max limit and tppos minimum limit. 4. guaranteed by design. symbol parameter min max unit llht 2 lvds low-to-high transition time (figure 5) 1.5 ns lhlt 2 lvds high-to-low transition time (figure 5) 1.5 ns tppos0 2 transmitter output pulse position for bit 0 (figure 13) -0.18 0.270 ns tppos1 2 transmitter output pulse position for bit 1(figure 13) 1.72 2.17 ns tppos2 2 transmitter output pulse position for bit 2 (figure 13) 3.63 4.08 ns tppos3 2 transmitter output pulse position for bit 3 (figure 13) 5.53 5.98 ns tppos4 2 transmitter output pulse position for bit 4 (figure 13) 7.44 7.89 ns tppos5 2 transmitter output pulse position for bit 5 (figure 13) 9.34 9.79 ns tppos6 2 transmitter output pulse position for bit 6 (figure 13) 11.25 11.70 ns tccs 3 channel to channel skew (figure 7) 0.45 ns tcip txclk in period (figure 8) 13.3 66.7 ns tcih 4 txclk in high time (figure 8) 0.35tcip 0.65tcip ns tcil 4 txclk in low time (figure 8) 0.35tcip 0.65tcip ns tstc 2 txin setup to txclk in (figure 8) 1.0 0.5 ns thtc 2 txin hold to txclk in (figure 8) 0.7 0.5 ns tccd txclk in to txclk out delay (figure 9) 0.5 2.5 ns tplls transmitter phase lock loop set (figure 10) 10 ms tpdd transmitter powerdown delay (figure 12) 100 ns f=75mhz f=75mhz f=75mhz f=75mhz f=75mhz f=75mhz f=75mhz 15mhz 75mhz 15mhz 75mhz
ac timing diagrams txclk in txin figure 4. test pattern 80% llht lhlt vdiff vdiff=(txout+) - (txout-) 20% 80% 20% txout+ 100 txout- 5pf figure 5. ut54lvds217 output load and transition times 90% tcit 10% 90% 10% txclk in tcit figure 6. ut54lvds217 input clock transition time t
txout0 txout1 txout2 txclk out tccs vdiff= 0v time figure 7. ut54lvds217 channel-to-channel skew txclk out vdiff= 0v txclk in tccd v dd /2 tcil tcip tcih txclk in v dd /2 tstc thtc hold setup txin 0-20 figure 8. ut54lvds217 setup/ hold and high/low times figure 9. ut54lvds217 clock-to-clock out delay notes: 1. measurements at v diff = 0v 2. tccs measured between earliest and latest lvds edges. 3. txclk differential low-high edge. sample on l-h edge v dd /2 v dd /2 v dd /2 v dd /2
power down v dd tplls txclk in txclk out / rxclk in vdiff = ov v dd /2 figure 10. ut54lvds217 phase lock loop set time txclk out / rxclk in previous cycle next cycle txin15-1 txin14-1 txin20 txin19 txin18 txin17 txin16 txin15 txin14 txin8-1 txin7-1 txin13 txin12 tx in11 txin10 txin9 txin8 txin7 txin1-1 txin0-1 txin6 txin5 txin4 txin3 txin2 txin1 txin0 txout2 / rxin2 txout1 / rxin1 txout0 / rxin0 figure 11. ut54lvds217 parallel ttl da ta inputs mapped to lvds outputs v dd /2 v dd v dd
power down txclk in txout three-state tpdd figure 12. transmitter powerdown delay txclk out / differential previous cycle next cycle txin15-1 txin14-1 txin20 txin19 tx in18 txin17 txin16 txin15 txin14 txin8-1 txin7-1 txin13 txin12 tx in11 txin10 txin9 txin8 txin7 txin1-1 txin0-1 txin6 txin5 txin4 txin3 txin2 txin1 txin0 txout2 / (single ended) txout1 / single ended txout0 / single ended tppos0 tppos1 tppos2 tppos3 tppos4 tppos5 tppos6 figure 13. lvds output pu lse position measurement t clk v dd /2
figure 14. driver v od and v os test circuit or equivalent circuit generator v os v o d 40pf 40pf 50 50 50 50
11 packaging figure 15. 48-lead flatpack 1. all exposed metalized areas are gold plated over electropl ated nickel per mil-prf-38535. 2. the lid is electrica lly connected to vss. 3. lead finishes are in a ccordance with mil-prf-38535. 4. lead position and colana rity are not measured. 5. id mark symbol is vendor option. 6. with solder, increase maximum by 0.003. 6 4 5 6
12 ordering information ut54lvds217 serializer: ut 54lvds217 - * * * * * device type: ut54lvds217 serializer access time: not applicable package type: (u) = 48-lead flatpack (dual-in-line) screening: (c) = hirel temperature range flow (p) = prototype flow lead finish: (a) = hot solder dipped (c) = gold (x) = factory option (gold or solder) notes: 1. lead finish (a,c, or x) must be specified. 2. if an ?x? is specified when or dering, then the part marking will match the lead finish and will be either ?a? (solder) or ?c? (gold). 3. prototype flow per aeroflex manufa cturing flows document. tested at 25 c only. lead finish is gold only. radiation neither tested nor guaranteed. 4. hirel temperature range flow per aeroflex manufa cturing flows document. devices are tested at -55 c, room temp, and 125 c. radiation neither tested nor guaranteed.
13 ut54lvds217 serializer: smd 5962 - ** * federal stock class designator: no options total dose (r) = 1e5 rad(si) (f) = 3e5 rad(si) (g) = 5e5 rad(si) (h) = 1e6 rad(si) drawing number: 01534 device type 01 = 50mhz lvds serializer (contact factory) 02 = 75mhz lvds serializer class designator: (q) = qml class q (v) = qml class v case outline: (x) = 48 lead fl atpack (dual-in-line) lead finish: (a) = hot solder dipped (c) = gold (x) = factory option (gold or solder) 01534 ** notes: 1.lead finish (a,c, or x) must be specified. 2.if an ?x? is specified when ordering, part marking will match the lead finish and will be either ?a? (solder) or ?c? (gold). 3.total dose radiation must be specified when ordering. qml q and qml v not available without radiation hardening.
14 colorado toll free: 800-645-8862 fax: 719-594-8468 se and mid-atlantic tel: 321-951-4164 fax: 321-951-4254 international tel: 805-778-9229 fax: 805-778-1980 west coast tel: 949-362-2260 fax: 949-362-2266 northeast tel: 603-888-3975 fax: 603-888-4585 central tel: 719-594-8017 fax: 719-594-8468 www.aeroflex.com info-ams@aeroflex.com our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused aeroflex utmc microelectronic systems inc. (aeroflex) reserves the right to make changes to any products and services herein at any time without notice. consult aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by aeroflex; nor does the purchase, lease, or use of a product or service from aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of aeroflex or of third parties. aeroflex colordo springs - datasheet definition advanced datasheet - product in development preliminary datasheet - shipping prototype datasheet - shipping qml & reduced hi-rel


▲Up To Search▲   

 
Price & Availability of 5962G-0153401VXC

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X