![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
www.kersemi.com 1 12/2/04 IRFR3709ZPBF irfu3709zpbf hexfet power mosfet applications benefits very low r ds(on) at 4.5v v gs ultra-low gate impedance fully characterized avalanche voltage and current v dss r ds(on) max qg 30v 6.5m 17nc absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current p d @t c = 25c maximum power dissipation w p d @t c = 100c maximum power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds thermal resistance parameter typ. max. units r jc junction-to-case ??? 1.9 c/w r ja junction-to-ambient (pcb mount) ??? 50 r ja junction-to-ambient ??? 110 79 0.53 39 max. 86 61 340 20 30 300 (1.6mm from case) -55 to + 175 i-pak irfu3709zpbf d-pak IRFR3709ZPBF high frequency synchronous buck converters for computer processor power high frequency isolated dc-dc converters with synchronous rectification for telecom and industrial use lead-free 2 www.kersemi.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 22 ??? mv/c r ds(on) static drain-to-source on-resistance ??? 5.2 6.5 m ? ??? 6.5 8.2 v gs(th) gate threshold voltage 1.35 1.80 2.25 v ? v gs(th) / ? t j gate threshold voltage coefficient ??? -5.6 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 51 ??? ??? s q g total gate charge ??? 17 26 q gs1 pre-vth gate-to-source charge ??? 4.7 ??? q gs2 post-vth gate-to-source charge ??? 1.6 ??? nc q gd gate-to-drain charge ??? 5.7 ??? q godr gate charge overdrive ??? 5.0 ??? see fig. 16 q sw switch charge (q gs2 + q gd ) ??? 7.3 ??? q oss output charge ??? 10 ??? nc t d(on) turn-on delay time ??? 12 ??? t r rise time ??? 12 ??? t d(off) turn-off delay time ??? 15 ??? ns t f fall time ??? 3.9 ??? c iss input capacitance ??? 2330 ??? c oss output capacitance ??? 460 ??? pf c rss reverse transfer capacitance ??? 230 ??? avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current a e ar repetitive avalanche energy mj diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 86 (body diode) a i sm pulsed source current ??? ??? 340 (body diode) v sd diode forward voltage ??? ??? 1.0 v t rr reverse recovery time ??? 29 44 ns q rr reverse recovery charge ??? 25 37 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) mosfet symbol v gs = 4.5v, i d = 12a ??? v gs = 4.5v typ. ??? ??? i d = 12a v gs = 0v v ds = 15v t j = 25c, i f = 12a, v dd = 15v di/dt = 100a/s t j = 25c, i s = 12a, v gs = 0v showing the integral reverse p-n junction diode. v ds = v gs , i d = 250a v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 150c clamped inductive load v ds = 15v, i d = 12a v ds = 16v, v gs = 0v v dd = 16v, v gs = 4.5v i d = 12a v ds = 15v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 15a v gs = 20v v gs = -20v conditions 7.9 max. 100 12 ? = 1.0mhz www.kersemi.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.25v 20s pulse width tj = 25c vgs top 10v 5.0v 4.5v 3.5v 3.0v 2.7v 2.5v bottom 2.25v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.25v 20s pulse width tj = 175c vgs top 10v 5.0v 4.5v 3.5v 3.0v 2.7v 2.5v bottom 2.25v 0 1 2 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 15v 20s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 10v 4 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 5 10 15 20 25 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v i d = 12a 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse www.kersemi.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.810 0.000260 0.640 0.001697 0.451 0.021259 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 80 90 100 i d , d r a i n c u r r e n t ( a ) limited by package 6 www.kersemi.com d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 400 450 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 6.6a 8.4a bottom 12a fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - www.kersemi.com 7 fig 15. for n-channel hexfet power mosfets ? ? ? p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? !"!! ? # $$ ? !"!!%" fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 8 www.kersemi.com control fet !" # $ %& !" # #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? " ( %& !" %& !" " ) # * %+ %& !" # # , # - . / # # synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets? susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be- tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca- pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic www.kersemi.com 9 0 - . 12 in the assembly line "a" ass embled on ww 16, 1999 example: with assembly this is an irfr120 lot code 1234 ye ar 9 = 199 9 dat e code week 16 part number logo international rect ifier assembly lot code 916a irf u120 34 year 9 = 1999 dat e code or p = designates lead-free product (optional) note: "p" in as sembly line position indicates "l ead-f r ee" 12 34 week 16 a = assembly site code part number irf u120 line a logo lot code assembly international rect ifier 10 www.kersemi.com 56 78 as s e mb l y lot code rectifier logo int ernational irfu120 part number week 19 dat e code year 9 = 1999 a = as s e mb l y s it e code p = designates lead-free product (opt ional) 0 - . as s e mb l y example: with assembly t his is an irfu120 ye ar 9 = 199 9 dat e code line a we e k 19 in the ass embly line "a" as s embled on ww 19, 1999 lot code 5678 part number 56 irfu120 inte rnational logo rectifier lot code 919a 78 note: "p" in as s embly line pos ition indicates "l ead-f ree" www.kersemi.com 11 repetitive rating; pulse width limited by max. junction temperature. starting t j = 25c, l = 1.4mh, r g = 25 ? , i as = 12a. pulse width 400s; duty cycle 2%. calculated continuous current based on maximum allowable junction temperature. package limitation current is 30a. when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994. 0 - . tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch |
Price & Availability of IRFR3709ZPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |