![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
www.irf.com 1 09/14/07 IRFS4228PBF irfsl4228pbf notes through are on page 10 description hexfet ? power mosfet mosfet ! " mosfet #$%&' ( ) * * ) mosfet +* * features advanced process technology key parameters optimized for pdp sustain, energy recovery and pass switch applications low e pulse rating to reduce power dissipation in pdp sustain, energy recovery and pass switch applications low q g for fast response high repetitive peak current capability for reliable operation short fall & rise times for fast switching 175c operating junction temperature for improved ruggedness repetitive avalanche capability for robustness and reliability gds gate drain source s d g d 2 pak IRFS4228PBF to-262 irfsl4228pbf s d g s d g d d absolute maximum ratings parameter units v gs gate-to-source voltage v i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current i rp @ t c = 100c repetitive peak current p d @t c = 25c power dissipation w p d @t c = 100c power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature for 10 seconds mounting torque, 6-32 or m3 screw n thermal resistance parameter typ. max. units r jc junction-to-case ??? 0.45 c/w r ja junction-to-ambient ( pcb mount ) , d 2 pak ??? 40 max. 59 330 83 30 170 300 -40 to + 175 10lb in (1.1n m) 330 170 2.2 v ds min 150 v v ds (avalanche) typ. 180 v r ds(on) typ. @ 10v 12 m i rp max @ t c = 100c 170 a t j max 175 c key parameters * r jc (end of life) for d 2 pak and to-262 = 0.65c/w. this is the maximum measured value after 1000 temperature cycles from -55 to 150c and is accounted for by the physical wearout of the die attach medium. * 2 www.irf.com s d g electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 150 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 150 ??? mv/c r ds(on) static drain-to-source on-resistance ??? 12 15 m ? v gs(th) gate threshold voltage 3.0 ??? 5.0 v ? v gs(th) / ? t j gate threshold voltage coefficient ??? -14 ??? mv/c i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 1.0 ma i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 g fs forward transconductance 170 ??? ??? s q g total gate charge ??? 71 107 nc q gd gate-to-drain charge ??? 21 ??? t d(on) turn-on delay time ??? 18 ??? t r rise time ??? 59 ??? ns t d(off) turn-off delay time ??? 24 ??? t f fall time ??? 33 ??? t st shoot through blocking time 100 ??? ??? ns e pulse energy per pulse j c iss input capacitance ??? 4530 ??? c oss output capacitance ??? 550 ??? pf c rss reverse transfer capacitance ??? 100 ??? c oss eff. effective output capacitance ??? 480 ??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package avalanche characteristics parameter units e as single pulse avalanche energy mj e ar repetitive avalanche energy mj v ds(avalanche) repetitive avalanche voltage v i as avalanche current a diode characteristics parameter min. typ. max. units i s @ t c = 25c continuous source current ??? ??? 83 (body diode) a i sm pulsed source current ??? ??? 330 (body diode) v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 76 110 ns q rr reverse recovery charge ??? 230 350 nc v dd = 75v, v gs = 10v i d = 50a r g = 2.5 ? see fig. 22 mosfet symbol v ds = 25v, i d = 50a v dd = 75v, i d = 50a, v gs = 10v conditions and center of die contact v dd = 120v, v gs = 15v, r g = 5.1 ? v ds = 120v, r g = 5.1 ?, t j = 25c l = 220nh, c= 0.3f, v gs = 15v v ds = 120v, r g = 5.1 ?, t j = 100c v ds = 25v v ds = v gs , i d = 250a v ds = 150v, v gs = 0v v gs = 0v, v ds = 0v to 120v v ds = 150v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v v gs = 0v l = 220nh, c= 0.3f, v gs = 15v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 33a t j = 25c, i f = 50a, v dd = 50v di/dt = 100a/s t j = 25c, i s = 50a, v gs = 0v showing the integral reverse p-n junction diode. typ. max. ? = 1.0mhz ??? 120 33 50 ??? ??? 180 ??? ??? 58 ??? ??? 110 ??? www.irf.com 3 fig 6. typical e pulse vs. drain current fig 5. typical e pulse vs. drain-to-source voltage fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v 60s pulse width tj = 25c 5.0v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.0v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v 3 4 5 6 7 8 9 10 11 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 50a v gs = 10v 85 90 95 100 105 110 115 120 125 v ds, drain-to-source voltage (v) 20 30 40 50 60 70 80 90 100 110 120 e n e r g y p e r p u l s e ( j ) l = 220nh c = 0.3f 100c 25c 60 65 70 75 80 85 90 95 100 105 i d , peak drain current (a) 10 20 30 40 50 60 70 80 90 100 110 120 e n e r g y p e r p u l s e ( j ) l = 220nh c = variable 100c 25c 4 www.irf.com fig 11. maximum drain current vs. case temperature fig 12. maximum safe operating area fig 8. typical source-drain diode forward voltage fig 7. typical e pulse vs.temperature 20 40 60 80 100 120 140 160 temperature (c) 0 20 40 60 80 100 120 140 e n e r g y p e r p u l s e ( j ) l = 220nh c = 0.3f c = 0.2f c = 0.1f 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v fig 10. typical gate charge vs.gate-to-source voltage fig 9. typical capacitance vs.drain-to-source voltage 25 50 75 100 125 150 175 t j , junction temperature (c) 0 10 20 30 40 50 60 70 80 90 i d , d r a i n c u r r e n t ( a ) 0 1020304050607080 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 120v v ds = 75v v ds = 30v i d = 50a 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100sec 1msec 10msec 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss www.irf.com 5 fig 17. maximum effective transient thermal impedance, junction-to-case fig 15. threshold voltage vs. temperature fig 14. maximum avalanche energy vs. temperature fig 13. on-resistance vs. gate voltage fig 16. typical repetitive peak current vs. case temperature 4 6 8 10 12 14 16 18 v gs, gate -to -source voltage (v) 0 10 20 30 40 50 60 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 50a t j = 125c t j = 25c 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 13a 20a bottom 50a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 175 case temperature (c) 0 50 100 150 200 250 r e p e t i t i v e p e a k c u r r e n t ( a ) ton= 1s duty cycle = 0.25 half sine wave square pulse 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.0852 0.000052 0.1882 0.000980 0.1769 0.008365 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri 6 www.irf.com fig 19b. unclamped inductive waveforms fig 19a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 20a. gate charge test circuit fig 20b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 18. for hexfet power mosfets ? ? ? p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? !"!! ? # $$ ? !"!!%" www.irf.com 7 fig 21a. t st and e pulse test circuit fig 21b. t st test waveforms fig 21c. e pulse test waveforms pulse a pulse b t st driver dut l c vcc rg rg b a ipulse fig 22a. switching time test circuit fig 22b. switching time waveforms &' 1 ( # 0.1 % + - v ds 90% 10% v gs t d(on) t r t d(off) t f 8 www.irf.com ! note: for the most current drawing please refer to ir website at: http://www.irf.com/package/ www.irf.com 9 to-262 part marking information to-262 package outline dimensions are shown in millimeters (inches) |