Part Number Hot Search : 
IR3N74AN DACHK M74HC164 GI78L18 0201ES HEM881 LWE67C HEM881
Product Description
Full Text Search
 

To Download FZ06NPA070FP01 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  FZ06NPA070FP01 preliminary datasheet flownpc 0 600v/75a & 70a ps* *ps: 70a parallel switch (60a pt and 99m ? ) neutral point clamped inverter reactive power capability low inductance layout solar inverter ups FZ06NPA070FP01 tj=25c, unless otherwise specified parameter symbol value unit buck igbt t h =80c 44 t c =80c 59 t h =80c 71 t c =80c 108 t sc t j 150c 5 s v cc v ge =15v 390 v buck diode t h =80c 21 t c =80c 28 t h =80c 41 t c =80c 62 240 t c =100c 120 w power dissipation per diode p tot dc forward current a t j =t j max t p limited by t j max a i f v rrm maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings peak repetitive reverse voltage gate-emitter peak voltage a v c v types maximum ratings condition features flow0 12mm housing target applications schematic i frm t j max repetitive peak forward current 150 v 600 collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c 600 20 w a 150 maximum junction temperature c t j =t j max t j =25c t j =t j max t j =t j max t p limited by t j max 1 revisi on: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition buck mosfet t h =80c 16 t c =80c 21 t h =80c 54 t c =80c 97 boost igbt t h =80c 57 t c =80c 75 t h =80c 85 t c =80c 129 t sc t j 150c 6 s v cc v ge =15v 360 v boost inverse diode t h =80c 2 t c =80c t h =80c 21 t c =80c boost diode t j =25c t h =80c 20 t c =80c 28 t h =80c 34 t c =80c 52 70 1200 tc=25c 93 150 600 225 20 power dissipation per diode peak repetitive reverse voltage c maximum junction temperature t j max 150 power dissipation t j max drain to source breakdown voltage v ds dc drain current i d pulsed drain current i dpulse p tot gate-source peak voltage vgs maximum junction temperature v ce i cpuls t j =t j max i c p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm t p limited by t j max v rrm v ge i f t j =t j max t j max p tot w a w v c v a peak repetitive reverse voltage a t j =t j max a v c v 150 20 t p limited by t j max w 600 t j =t j max a t j =t j max dc collector current power dissipation per igbt repetitive peak collector current gate-emitter peak voltage maximum junction temperature short circuit ratings power dissipation per diode t j =t j max v a v c w a collector-emitter break down voltage t p limited by t j max 600 maximum junction temperature t j max 175 t c =25c v rrm dc forward current p tot 2 revi sion: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm clearance insulation voltage creepage distance t op operation temperature under switching condition c storage temperature t stg c -40?+125 -40?+(tjmax - 25) 3 revi sion: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 4.5 5.2 7 t j =150c t j =25c 1.45 2.32 2.5 t j =150c 2.09 t j =25c 250 t j =150c t j =25c 300 t j =150c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0.99 k/w * see dinamic characteristic at buck mosfet **additional value stands for built-in capacitor t j =25c 3.18 3.3 t j =150c 2.37 t j =25c 81 t j =150c 82 t j =25c 13 t j =150c 22 t j =25c 0.48 t j =150c 1.09 di ( rec ) max t j =25c 24887 /d t t j =150c 13582 t j =25c 0.097 t j =150c 0.164 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1.72 k/w t j =25c 109 t j =125c 219 t j =25c 2.1 3 3.9 t j =125c t j =25c 200 t j =125c t j =25c 15 t j =125c t j =25c 131 t j =125c 129 t j =25c 8 t j =125c 9 t j =25c 228 t j =125c 230 t j =25c 8 t j =125c 3 t j =25c 0.102 t j =125c 0.325 t j =25c 0.094 t j =125c 0.202 ** see schematic of the gate-complex at characteristic figures f=1mhz 0 100 400 tj=25c pf 130 225+70 na none tj=25c 60 ns a v ? v a k/w nc pf nf nc 4+4,7 thermal resistance chip to heatsink per chip output capacitance turn-on energy loss per pulse fall time total gate charge input capacitance gate to drain charge gate to source charge turn off delay time rise time input capacitance ** output capacitance reverse recovery time gate threshold voltage peak reverse recovery current reverse transfer capacitance diode forward voltage gate charge ** turn-off energy loss per pulse rgon=8 ? reverse recovered charge buck diode gate to source leakage current turn on delay time t f 0 rgon=8 ? ** 20 15 600 0 integrated gate resistor buck igbt * gate emitter threshold voltage collector-emitter cut-off current incl. diode gate-emitter leakage current m ? 80 na ns mws na 1.29 14 20 2800 v c mws a/ s 200 characteristic values value conditions i ces r gint collector-emitter saturation voltage c iss c oss q gs r thjh rgoff=8 ? ** reverse recovered energy peak rate of fall of recovery current static drain to source on resistance buck mosfet erec zero gate voltage drain current i dss e off c oss i rrm c rss v f v (gs)th i gss t r t d(off) e on q gd q gate v ge(th) v ce(sat) f=1mhz i ges vce=vge q g c ies q rr t rr t d(on) r ds(on) 15 0 thermal grease thickness 50um = 1 w/mk 15 15 10 20 30 40 v ds =v gs 18 0.001 40 tj=25c 70 350 350 0 350 tj=25c 0.00025 v 25 600 40 0 4 revisio n: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 5 5.8 6.5 t j =150c t j =25c 1 1.49 2.1 t j =150c 1.60 t j =25c 0.03 t j =150c t j =25c 650 t j =150c t j =25c 37 t j =150c 35 t j =25c 13 t j =150c 16 t j =25c 459 t j =150c 500 t j =25c 83 t j =150c 106 t j =25c 0.807 t j =150c 1.110 t j =25c 1.354 t j =150c 1.708 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1.11 k/w t j =25c 9.07 tj=125c 9.43 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 4.36 k/w t j =25c 1.5 2.44 3.5 t j =125c 2.01 t j =25c 100 t j =125c t j =25c 80 t j =125c 100 t j =25c 33 t j =125c 109 t j =25c 2.74 t j =125c 6.02 di ( rec ) max t j =25c 11226 /d t t j =125c 8793 t j =25c 0.607 t j =125c 1.520 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2.04 k/w r 25 tol. 13% tj=25c 19.1 22 24.9 k ? r 100 tol. 5% tj=100c 1411 1486 1560 ? * see details on thermistor charts on figure 2. none 470 tj=25c tj=25c 70 0.0012 600 1200 350 25 0 40 rgon=8 ? 350 rgon=8 ? 30 20 f=1mhz i rrm rgoff=8 ? diode forward voltage reverse leakage current v f i r thermistor reverse recovery energy t rr q rr e rec reverse recovery time peak rate of fall of recovery current 15 15 0 ma na v v i ges v ce =v ge rated resistance* b-value b (25/100) tol. 3% power dissipation mw 210 p 40 tj=25c pf 75 288 4620 k ns mws ? 480 nc i ces t f t r t d(on) r gint 20 0 15 c oss c ies boost inverse diode boost diode diode forward voltage v f v ge(th) v ce(sat) t d(off) gate emitter threshold voltage boost igbt fall time turn-off delay time collector-emitter saturation voltage collector-emitter cut-off incl diode turn-on delay time rise time integrated gate resistor gate-emitter leakage current peak reverse recovery current reverse recovered charge turn-off energy loss per pulse q gate e off turn-on energy loss per pulse gate charge input capacitance output capacitance c rss reverse transfer capacitance e on 137 tj=25c 4000 a/ s a mws c v v a ns 5 revisio n: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 1 mosfet figure 2 mosfet typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 3 v to 19 v in steps of 2 v v ge from 3 v to 19 v in steps of 2 v figure 3 mosfet figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v buck typical output characteristics 0 15 30 45 60 75 90 012345 v ce (v) i c (a) 0 5 10 15 20 25 0123456 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 0.8 1.6 2.4 3.2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 90 012345 v ce (v) i c (a) 6 revis ion: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 5 mosfet figure 6 mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of igbt gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 40 a r goff = 8 ? figure 7 fred figure 8 fred typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 40 a buck e on high t e off high t e on low t e off low t 0.0 0.2 0.4 0.6 0.8 1.0 0 2 04 06 08 0 i c (a) e (mws) e off high t e on high t e on low t e off low t 0.0 0.2 0.4 0.6 0.8 1.0 0 8 16 24 32 40 r g (w) e (mws) e rec high t e rec low t 0.00 0.05 0.10 0.15 0.20 0.25 0 20406080 i c (a) e (mws) e rec high t e rec low t 0.00 0.05 0.10 0.15 0.20 0.25 0 8 16 24 32 40 r g (w) e (mws) 7 revis ion: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 9 mosfet figure 10 mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 40 a r goff = 8 ? figure 11 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r gon = 8 ? v ge = 15 v buck t doff t don t r 0.00 0.01 0.10 1.00 0 20406080 i c (a) t (ms) t rr low t 0.000 0.008 0.016 0.024 0.032 0.040 0 8 16 24 32 40 r gon (w) t rr (ms) t rr high t t doff t don t r 0.00 0.01 0.10 1.00 0 8 16 24 32 40 r g (w) t (ms) t rr low t 0.000 0.008 0.016 0.024 0.032 0.040 0 2 04 06 08 0 i c (a) t rr (ms) t rr high t 8 revis ion: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r gon = 8 ? v ge = 15 v figure 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r gon = 8 ? v ge = 15 v buck i rrm high t i rrm low t 0 30 60 90 120 150 0 8 16 24 32 40 r gon (w) i rrm (a) q rr high t q rr low t 0 0.3 0.6 0.9 1.2 1.5 0 8 16 24 32 40 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 20 40 60 80 100 0 20406080 i c (a) i rrm (a) q rr low t 0.00 0.30 0.60 0.90 1.20 1.50 0 20406080 i c (a) q rr (mc) q rr high t 9 revis ion: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 17 fred figure 18 fred typical rate of fall of forward and reverse recovery current typical rate of fall of forward and reverse recovery current as a function of collector current as a function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r gon = 8 ? v ge = 15 v figure 19 igbt figure 20 fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0.99 k/w r thjh = 1.72 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0.06 9.7e+00 0.04 7.9e+00 0.18 9.9e-01 0.21 8.8e-01 0.56 1.6e-01 0.82 1.3e-01 0.14 2.4e-02 0.39 3.0e-02 0.05 1.6e-03 0.17 4.1e-03 0.09 6.3e-04 buck t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 5000 10000 15000 20000 25000 30000 0 8 16 24 32 40 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 5000 10000 15000 20000 25000 30000 0 20406080 i c (a) di rec / dt (a/ms) 10 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 21 igbt figure 22 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 c t j = 150 c v ge = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 c t j = 150 c buck 0 50 100 150 200 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) 11 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 25 igbt figure 26 igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i g(ref) =1ma, r l =15 ? th = 80 oc v ge = 15 v t j =t jmax oc figure 27 mosfet figure 28 mosfet mosfet transient thermal impedance gate voltage vs gate charge as a function of pulse width z thjh = f(t p ) v ge = f(q g ) at d = t p / t r thjh = 1.29 k/w at i c = 18 a mosfet thermal model values r (c/w) tau (s) 0.09 9.2e+00 0.27 1.3e+00 0.53 2.1e-01 0.27 4.0e-02 0.08 4.8e-03 0.05 4.7e-04 buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100m dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 102030405060708090100 q g (nc) v ge (v) 120v 480v t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 5 10 15 0 50 100 150 200 250 300 q g (nc) v ge (v) 200 v 400 v 0 1 2 3 4 5 6 7 8 9 10 0 102030405060 q g (nc) v ge (v) 120 v 480 v 12 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 6 v to 16 v in steps of 1 v figure 3 igbt figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v boost 0 15 30 45 60 75 90 012345 v ce (v) i c (a) 0 5 10 15 20 25 30 0246810 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 0.8 1.6 2.4 3.2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 90 012345 v ce (v) i c (a) 13 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 40 a r goff = 8 ? figure 7 igbt figure 8 igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 40 a boost e rec high t e rec low t 0 0.5 1 1.5 2 2.5 0 2 04 06 08 0 i c (a) e (mws) e rec high t e rec low t 0 0.5 1 1.5 2 2.5 0 8 16 24 32 40 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 0.5 1 1.5 2 2.5 3 0 20406080 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0.5 1 1.5 2 2.5 3 0 8 16 24 32 40 r g ( ) e (mws) 14 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 40 a r goff = 8 ? figure 11 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r gon = 8 ? v ge = 15 v boost t doff t f t don t r 0.001 0.01 0.1 1 10 0 20406080 i c (a) t ( s) t doff t f t don t r 0.001 0.01 0.1 1 10 0 8 16 24 32 40 r g ( ) t ( s) t rr high t t rr low t 0.00 0.04 0.08 0.12 0.16 0.20 0 8 16 24 32 40 r gon (w) t rr (ms) t rr high t t rr low t 0.00 0.03 0.06 0.09 0.12 0.15 0 20406080 i c (a) t rr (ms) 15 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r gon = 8 ? v ge = 15 v figure 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r gon = 8 ? v ge = 15 v boost i rrm high t i rrm low t 0 30 60 90 120 150 180 0 8 16 24 32 40 r gon (w) i rrm (a) q rr high t q rr low t 0 2 4 6 8 10 0 8 16 24 32 40 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 30 60 90 120 150 0 20406080 i c (a) i rrm (a) q rr high t q rr low t 0 2 4 6 8 10 0 20406080 i c (a) q rr (mc) 16 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 17 fred figure 18 fred typical rate of fall of forward and reverse recovery current typical rate of fall of forward and reverse recovery current as a function of collector current as a function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r gon = 8 ? v ge = 15 v figure 19 igbt figure 20 fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 1.11 k/w r thjh = 2.04 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0.06 9.9e+00 0.04 9.8e+00 0.22 1.2e+00 0.21 1.0e+00 0.59 1.4e-01 1.12 1.5e-01 0.17 2.2e-02 0.42 3.7e-02 0.03 2.7e-03 0.17 4.4e-03 0.04 2.7e-04 0.08 6.1e-04 boost t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 3000 6000 9000 12000 15000 0 8 16 24 32 40 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 3000 6000 9000 12000 15000 0 20406080 i c (a) di rec / dt (a/ms) 17 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 21 igbt figure 22 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc boost 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) i f (a) 18 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 25 boost inverse diode figure 26 boost inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 4.36 k/w figure 27 boost inverse diode figure 28 boost inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc boost 0 5 10 15 20 25 30 03691215 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 2 4 6 8 10 0 50 100 150 200 th ( o c) i f (a) 19 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? [] ?= ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? 25 100 / 25 11 25 )( tt b ertr 20 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet t j 125 c r g on igb t =8 ? r g on mosfe t =0 ? r goff igbt =8 ? r goff mosfet = 47 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 40 a i c (100%) = 40 a t doff = 0.23 s t don = 0.13 s t eoff = 0.24 s t eon = 0.16 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 40 a i c (100%) = 40 a t f = 0.00 s t r = 0.01 s switching definitions buck mosfet general conditions = i c 1% v ce 90% v ge 90% -40 -10 20 50 80 110 140 170 200 -0.1 -0.02 0.06 0.14 0.22 0.3 0.38 0.46 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 250 300 350 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -40 0 40 80 120 160 200 0.2 0.22 0.24 0.26 0.28 0.3 0.32 time (us) % v ce i c t f i c10% i c90% -20 30 80 130 180 230 280 330 4.08 4.1 4.12 4.14 4.16 4.18 4.2 time(us) % tr v ce ic 21 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 13.94 kw p on (100%) = 13.94 kw e off (100%) = 0.20 mj e on (100%) = 0.33 mj t eoff = 0.24 s t eon = 0.16 s figure 7 output inverter igbt figure 8 output inverter fred turn-off switching waveforms & definition of t r r turn-on switching waveforms & definition of t qr r (t qrr = integrating time for q r r ) v d (100%) = 350 v i d (100%) = 40 a i d (100%) = 40 a q rr (100%) = 1.09 c i rrm (100%) = -82 a t qrr = 0.04 s t rr = 0.02 s switching definitions buck mosfet i c 1% v ge90% -30 -10 10 30 50 70 90 110 130 -0.1 -0.02 0.06 0.14 0.22 0.3 0.38 time (us) % p o f f e off t eoff v ce3% v ge10% -30 0 30 60 90 120 150 180 3.95 3.99 4.03 4.07 4.11 4.15 4.19 4.23 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -240 -200 -160 -120 -80 -40 0 40 80 120 4.1 4.12 4.14 4.16 4.18 4.2 time(us) % i d v d fitted t qrr -250 -200 -150 -100 -50 0 50 100 150 4.05 4.08 4.11 4.14 4.17 4.2 4.23 time(us) % i d q r r 22 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet figure 9 output inverter fred turn-on switching waveforms & definition of t erec (t erec = integrating time for e rec ) p rec (100%) = 13.94 kw e rec (100%) = 0.16 mj t erec = 0.04 s figure 11 figure 12 buck stage switching measurement circuit boost stage switching measurement circuit cg is included in the module measurement circuits switching definitions buck mosfet -20 0 20 40 60 80 100 120 140 4.1 4.12 4.14 4.16 4.18 4.2 4.22 time(us) % p rec e rec t erec 23 rev ision: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FZ06NPA070FP01-p969f10 p969f10 p969f10 outline pinout ordering code & marking ordering code and marking - outline - pinout 24 revi sion: 3 copyright by vincotech
FZ06NPA070FP01 preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 25 revisi on: 3 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of FZ06NPA070FP01

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X