![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
hexfet power mosfet high frequency dc-dc converters lead-free benefits applications low gate to drain charge to reduce switching losses fully characterized capacitance including effective c oss to simplify design, (see app. note an1001) fully characterized avalanche voltage and current notes through are on page 8 so-8 v dss r ds(on) max i d 80v 73m @v gs = 10v 3.6a d1 d1 d2 d2 g1 s2 g2 s1 top view 8 1 2 3 4 5 6 7 absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t a = 25c maximum power dissipation w linear derating factor w/c dv/dt peak diode recovery dv/dt v/ns t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jl junction-to-drain lead ??? 42 c/w r ja junction-to-ambient (pcb mount) ??? 62.5 max. 3.6 2.9 29 80 20 0.02 2.3 2.0 -55 to + 150 irf7380pbf s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v ( br ) dss drain-to-source breakdown voltage 80 ??? ??? v ? v ( br ) dss / ? t j breakdown voltage temp. coefficient ??? 0.09 ??? v/c r ds ( on ) static drain-to-source on-resistance ??? 61 73 m ? v gs ( th ) gate threshold voltage 2.0 ??? 4.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 dynamic @ t j = 25c (unless otherwise specified) parameter min. typ. max. units gfs forward transconductance 4.3 ??? ??? s q g total gate charge ??? 15 23 q g s gate-to-source charge ??? 2.9 ??? nc q g d gate-to-drain ("miller") charge ??? 4.5 ??? t d ( on ) turn-on delay time ??? 9.0 ??? t r rise time ??? 10 ??? t d ( off ) turn-off delay time ??? 41 ??? ns t f fall time ??? 17 ??? c iss input capacitance ??? 660 ??? c oss output capacitance ??? 110 ??? c rss reverse transfer capacitance ??? 15 ??? pf c oss output capacitance ??? 710 ??? c oss output capacitance ??? 72 ??? c oss eff. effective output capacitance ??? 140 ??? avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current a diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 3.6 a (body diode) i sm pulsed source current ??? ??? 29 a (body diode) v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 50 ??? ns q rr reverse recovery charge ??? 110 ??? nc 2.2 typ. ??? ??? conditions v ds = 25v, i d = 2.2a i d = 2.2a v ds = 40v mosfet symbol showing the integral reverse p-n junction diode. conditions v gs = 10v v gs = 0v v ds = 25v ? = 1.0mhz 75 t j = 25c, i s = 2.2a, v gs = 0v t j = 25c, i f = 2.2a, v dd = 40v di/dt = 100a/s conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 2.2a v ds = v gs , i d = 250a v ds = 80v, v gs = 0v v ds = 64v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v max. v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 64v, ? = 1.0mhz v gs = 0v, v ds = 0v to 64v v gs = 10v v dd = 40v i d = 2.2a r g = 24 ? irf7380pbf fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 2.5 v = i = gs d 10v 3.6a 3.0 4.0 5.0 6.0 7.0 v gs , gate-to-source voltage (v) 0 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 15v 20s pulse width 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 3.7v 20s pulse width tj = 150c vgs top 15v 10v 7.0v 5.0v 4.5v 4.3v 4.0v bottom 3.7v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.001 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 3.7v 20s pulse width tj = 25c vgs top 15v 10v 7.0v 5.0v 4.5v 4.3v 4.0v bottom 3.7v t j , junction temperature (c) rds(on), drain-to-source on resistance (normalized) irf7380pbf fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.1 1 10 100 0.0 0.5 1.0 1.5 2.0 v = 0 v gs t = 150 c j t = 25 c j 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec fig 8. maximum safe operating area 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 2 4 6 8 10 12 14 16 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 64v v ds = 40v v ds = 16v i d = 2.1a v sd , source-to-drain voltage (v) i sd , reverse drain current (a) irf7380pbf fig 11. maximum effective transient thermal impedance, junction-to-case fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms 1 0.1 % + - fig 9. maximum drain current vs. ambient temperature 25 50 75 100 125 150 0.0 1.0 2.0 3.0 4.0 i , drain current (a) d t a , ambient temperature (c) 0.1 1 10 100 0.00001 0.0001 0.001 0.01 0.1 1 10 100 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thja a p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thja 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) irf7380pbf fig 13. on-resistance vs. gate voltage fig 12. on-resistance vs. drain current fig 14a&b. basic gate charge test circuit and waveform fig 15a&b. unclamped inductive test circuit and waveforms fig 15c. maximum avalanche energy vs. drain current d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - q g q gs q gd v g charge t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 150 0 40 80 120 160 200 i d top bottom 1.0a 1.8a 2.2a 0 5 10 15 20 25 30 i d , drain current (a) 50 55 60 65 70 75 80 85 90 95 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) v gs = 10v 3.0 5.0 7.0 9.0 11.0 13.0 15.0 v gs, gate -to -source voltage (v) 0 100 200 300 400 500 600 700 800 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 3.6a starting t j , junction temperature (c) e as , single pulse avalanche energy (mj) irf7380pbf !" ## $%$ ! ! ! $$ & ! dimensions are shown in milimeters (inches) so-8 part marking information irf7380pbf 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) notes: 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters(inches). 3. outline conforms to eia-481 & eia-541. so-8 tape and reel dimensions are shown in millimeters (inches) repetitive rating; pulse width limited by max. junction temperature. starting t j = 25c, l = 31mh r g = 25 ? , i as = 2.2a. pulse width 400s; duty cycle 2%. when mounted on 1 inch square copper board. c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss. i sd 2.2a, di/dt 220a/s, v dd v (br)dss ,t j 150c. !"#"$%!$& ' ()*$+!, - $ " . date comments 09/16/2013 ? updated the rthja from 50c/w to 62.5c/w, on page 1. ? converted the data sheet to ir corproate template. revision history |
Price & Availability of IRF7380PBF-15
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |