![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
parameter typ. max. units r ja maximum junction-to-ambient 75 100 hexfet power mosfet thermal resistance v dss = -12v r ds(on) = 0.05 ? ultra low on-resistance p-channel mosfet sot-23 footprint low profile (<1.1mm) available in tape and reel fast switching 1.8v gate rated lead-free halogen-free 07/22/08 www.irf.com 1 parameter max. units v ds drain- source voltage -12 v i d @ t a = 25c continuous drain current, v gs @ -4.5v -4.3 i d @ t a = 70c continuous drain current, v gs @ -4.5v -3.4 a i dm pulsed drain current -34 p d @t a = 25c power dissipation 1.3 p d @t a = 70c power dissipation 0.8 linear derating factor 0.01 w/c e as single pulse avalanche energy 33 mj v gs gate-to-source voltage 8.0 v t j, t stg junction and storage temperature range -55 to + 150 c these p-channel mosfets from international rectifierutilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet ? power mosfets are well known for, provides the designer with an extremely efficient and reliable devicefor use in battery and load management. a thermally enhanced large pad leadframe has been incorporated into the standard sot-23 package to produce a hexfet power mosfet with the industry's smallest footprint. this package, dubbed the micro3 ? , is ideal for applications where printed circuit board space is at apremium. the low profile (<1.1mm) of the micro3 allows it to fit easily into extremely thin application environments such as portable electronics and pcmcia cards. the thermal resistance and power dissipation are the best available. micro3 ? downloaded from: http:/// 2 www.irf.com parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC -1.2 v t j = 25c, i s = -1.3a, v gs = 0v t rr reverse recovery time CCC 22 33 ns t j = 25c, i f = -1.3a q rr reverse recoverycharge CCC 8.0 12 nc di/dt = -100a/s repetitive rating; pulse width limited by max. junction temperature. pulse width 300s; duty cycle 2%. source-drain ratings and characteristics -1.3 -34 s d g ! " starting t j = 25c, l = 3.5mh r g = 25 ? , i as = -4.3a. parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage -12 CCC CCC v v gs = 0v, i d = -250a ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC -0.007 CCC v/c reference to 25c, i d = -1ma CCC CCC 0.050 v gs = -4.5v, i d = -4.3a r ds(on) static drain-to-source on-resistance ### CCC 0.085 v gs = -2.5v, i d = -2.5a ### CCC 0.125 v gs = -1.8v, i d = -2.0a v gs(th) gate threshold voltage -0.40 -0.55 -0.95 v v ds = v gs , i d = -250a g fs forward transconductance 8.6 CCC CCC s v ds = -10v, i d = -4.3a CCC CCC -1.0 v ds = -12v, v gs = 0v CCC CCC -25 v ds = -9.6v, v gs = 0v, t j = 55c gate-to-source forward leakage CCC CCC -100 v gs = -8.0v gate-to-source reverse leakage CCC CCC 100 v gs = 8.0v q g total gate charge CCC 10 15 i d = -4.3a q gs gate-to-source charge CCC 1.4 2.1 nc v ds = -10v q gd gate-to-drain ("miller") charge CCC 2.6 3.9 v gs = -5.0v t d(on) turn-on delay time CCC 11 CCC v dd = -6.0v t r rise time CCC 32 CCC i d = -1.0a t d(off) turn-off delay time CCC 250 CCC r d = 6.0 ? t f fall time CCC 210 CCC r g = 89 ? c iss input capacitance CCC 830 CCC v gs = 0v c oss output capacitance CCC 180 CCC pf v ds = -10v c rss reverse transfer capacitance CCC 125 CCC ? = 1.0mhz electrical characteristics @ t j = 25c (unless otherwise specified) $ a ? i dss drain-to-source leakage current na ns downloaded from: http:/// www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 -v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) -1.0v 20s pulse width tj = 150c vgs top -7.0v -5.0v -4.5v -3.0v -2.5v -1.8v -1.5v bottom -1.0v 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 - i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = -12v 20s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d -4.5v -4.3a 0.1 1 10 100 -v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) -1.0v 20s pulse width tj = 25c vgs top -7.0v -5.0v -4.5v -3.0v -2.5v - 1.8v -1.5v bottom -1.0v downloaded from: http:/// 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.1 1 10 100 1000 0.1 1 10 100 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j c -v , drain-to-source voltage (v) -i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms 1 10 100 v ds , drain-to-source voltage (v) 0 200 400 600 800 1000 1200 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0.1 1 10 100 0.2 0.6 1.0 1.4 1.8 -v ,source-to-drain voltage (v) -i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 150 c j 0 4 8 12 16 0 2 4 6 8 10 q , total gate charge (nc) -v , gate-to-source voltage (v) g gs i = d -4.3a v = -10v ds downloaded from: http:/// www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature fig 10. maximum avalanche energy vs. drain current 25 50 75 100 125 150 0.0 1.0 2.0 3.0 4.0 5.0 t , case temperature ( c) -i , drain current (a) c d 0.1 1 10 100 1000 0.00001 0.0001 0.001 0.01 0.1 1 10 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thja a p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thja 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0 20 40 60 80 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom -1.9a -3.4a -4.3a downloaded from: http:/// 6 www.irf.com fig 13. typical on-resistance vs. drain current fig 12. typical on-resistance vs. gate voltage 0 1 02 03 04 0 -i d , drain current ( a ) 0.00 0.05 0.10 0.15 0.20 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) vgs = -4.5v vgs = -2.5v vgs = -1.8v fig 14. typical threshold voltage vs. junction temperature -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.3 0.4 0.5 0.6 0.7 0.8 - v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = -250a 1.0 2.0 3.0 4.0 5.0 6.0 7.0 -v gs, gate -to -source voltage ( v ) 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 r d s ( o n ) , d r a i n - t o - s o u r c e v o l t a g e ( ? ) id = -4.3a downloaded from: http:/// www.irf.com 7 micro3 / sot-23 package marking a yw lc part number y = year w = week lot code halogen free indicator part number code reference: a = irlml2402 b =irlml2803 c = irlml2402 d = irlml5103 e = irlml6402 f = irlml6401 g = irlml2502 h = irlml5203 note: a line above the work week (as shown here) indicates lead-free micro3 (sot-23 / to-236ab) part marking informationnote: for the most current drawing please refer to ir website at http://www.irf.com/package !" # $ ! " 0.972 1.900 recommended footprint 0.802 0.950 2.742 e e1 e d a b 0.15 [0.006] e1 1 2 3 m cba 5 6 6 5 3x l c b a1 3x a a2 abc m 0.20 [0.008] 0.10 [0.004] c c l2 h 4 l1 7 0.89 1.12 symbol max min a1 b 0.01 0.10 c 0.30 0.50 d 0.08 0.20 e 2.80 3.04 e1 2.10 2.64 e 1.20 1.40 a 0.95 bsc l0 . 4 00 . 6 0 08 millimeters a2 0.88 1.02 e1 1.90 bsc ref 0.54 l1 bsc 0.25 l2 bsc ref |