Part Number Hot Search : 
LT1029 GBU10D AM8052 GL6EG27T ENU28 AD7854L MC68661C L1209
Product Description
Full Text Search
 

To Download IRLB8748 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 04/22/09 IRLB8748pbf hexfet   power mosfet notes   through  are on page 9  applications benefits  very low rds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current lead-free  optimized for ups/inverter applications  high frequency synchronous buck converters for computer processor power  high frequency isolated dc-dc converters with synchronous rectification for telecom and industrial use gds gate drain source to-220ab IRLB8748pbf s d g d v dss r ds(on) max qg 30v 4.8m 15nc absolute maximum ratings parameter units v ds drain-to-source voltage v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation  p d @t c = 100c maximum power dissipation  linear derating factor w/c t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw  thermal resistance parameter typ. max. units r jc junction-to-case  CCC 2.0 r cs case-to-sink, flat greased surface 0.5 CCC r ja junction-to-ambient  CCC 62 75 max. 92  78 370 20 3065 0.5 38 10 lbf  in (1.1n  m) -55 to + 175 300 (1.6mm from case) v c/w w a c downloaded from: http:///

2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 21 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 3.8 4.8 CCC 5.5 6.8 v gs(th) gate threshold voltage 1.35 1.8 2.35 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -7.1 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 196 CCC CCC s q g total gate charge CCC 15 23 q gs1 pre-vth gate-to-source charge CCC 3.6 CCC q gs2 post-vth gate-to-source charge CCC 2.2 CCC nc q gd gate-to-drain charge CCC 5.9 CCC q godr gate charge overdrive CCC 3.9 CCC q sw switch charge (q gs2 + q gd ) CCC 8.1 CCC q oss output charge CCC 11 CCC nc r g gate resistance CCC 2.0 3.5 ? t d(on) turn-on delay time CCC 14 CCC t r rise time CCC 96 CCC t d(off) turn-off delay time CCC 16 CCC t f fall time CCC 34 CCC c iss input capacitance CCC 2139 CCC c oss output capacitance CCC 464 CCC c rss reverse transfer capacitance CCC 199 CCC avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. t y p. max. units i s continuous source current CCC CCC (body diode) i sm pulsed source current CCC CCC (body diode)  v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time C C C2 33 5n s q rr reverse recovery charge CCC 39 59 nc t on forward turn-on time m ? 92  370 ana ns pf a typ. CCC conditions 7.5 max. 114 32 ? = 1.0mhz v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 125c v ds = 15v, i d = 32a v ds = v gs , i d = 50a v ds = 15v v gs = 4.5v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 40a  v gs = 4.5v, i d = 32a  v gs = 20v v gs = -20v CCC i d = 32a v gs = 0v v ds = 15v r g = 1.8 ? i d = 32a v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v  intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) mosfet symbol CCC t j = 25c, i f = 32a, v dd = 15v di/dt = 200a/ s  t j = 25c, i s = 32a, v gs = 0v  showing the integral reverse p-n junction diode. downloaded from: http:///

www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 3.0v 60s pulse width tj = 175c vgs top 10v 9.0v 7.0v 5.5v 4.5v 4.0v 3.5v bottom 3.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 9.0v 7.0v 5.5v 4.5v 4.0v 3.5v bottom 3.0v 60s pulse width tj = 25c 3.0v 1 2 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 15v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 40a v gs = 10v downloaded from: http:///

4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 02 03 04 0 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v i d = 32a 0 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100sec 1msec 10msec downloaded from: http:///

www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 1.55246 0.0053030.00682 8.250407 0.00172 6.932919 0.43999 0.000317 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 50a id = 250a id = 1.0ma downloaded from: http:///

6 www.irf.com fig 13b. unclamped inductive waveforms fig 13a. unclamped inductive test circuit t p v (br)dss i as fig 13c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs v ds 90%10% v gs t d(on) t r t d(off) t f   
 1     0.1 %          + -   fig 14a. switching time test circuit fig 14b. switching time waveforms fig 12. on-resistance vs. gate voltage 2 4 6 8 10 v gs, gate -to -source voltage (v) 4 6 8 10 12 14 16 18 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 40a t j = 25c t j = 125c 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 400 450 500 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 6.73a 11.6a bottom 32a downloaded from: http:///

www.irf.com 7 d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 16. gate charge test circuit fig 15. 
 



   for n-channel hexfet   power mosfets 

 

 ?      ?    ?       p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ? !   "#  ? 
 $%&%% ?     "  '' ? %&%%(
&    fig 17. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///

8 www.irf.com 

   
    to-220ab packages are not recommended for surface mount application. note: for the most current drawing please refer to ir website at: http://www.irf.com/package/ downloaded from: http:///

www.irf.com 9   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.22 mh, r g = 25 ? , i as = 32a.  pulse width 400s; duty cycle 2%.  calculated continuous current based on maximum allowable junction temperature. package limitation current is 78a. 
 when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.      )     this is only applied to to-220ab pakcage. data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/2009 

  
   
                           ! "" #$ %&&!'()* )#$! +&# #$ #$,#-% !& "!%, . /!!"      " "     0  note: for the most current drawing please refer to ir website at: http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRLB8748

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X