![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
www.irf.com 1 1/16/04 irf3709zcs irf3709zcl hexfet power mosfet notes through are on page 11 applications benefits low r ds(on) at 4.5v v gs low gate charge fully characterized avalanche voltage and current high frequency synchronous buck converters for computer processor power d 2 pak irf3709zcs to-262 irf3709zcl v dss r ds(on) max qg 30v 6.3m 17nc absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current p d @t c = 25c maximum power dissipation w p d @t c = 100c maximum power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds thermal resistance parameter typ. max. units r jc junction-to-case CCC 1.89 c/w r ja junction-to-ambient (pcb mount) CCC 40 79 0.53 40 max. 87 62 350 20 30 300 (1.6mm from case) -55 to + 175 downloaded from: http:///
2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 0.021 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 5.0 6.3 m ? CCC 6.2 7.8 v gs(th) gate threshold voltage 1.35 CCC 2.25 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -5.5 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 88 CCC CCC s q g total gate charge CCC 17 26 q gs1 pre-vth gate-to-source charge CCC 4.4 CCC q gs2 post-vth gate-to-source charge CCC 1.7 CCC nc q gd gate-to-drain charge CCC 6.0 CCC q godr gate charge overdrive CCC 4.9 CCC see fig. 14a&b q sw switch charge (q gs2 + q gd ) CCC 7.7 CCC q oss output charge CCC 11 CCC nc t d(on) turn-on delay time CCC 13 CCC t r rise time CCC 41 CCC t d(off) turn-off delay time CCC 16 CCC ns t f fall time CCC 4.7 CCC c iss input capacitance CCC 2130 CCC c oss output capacitance CCC 450 CCC pf c rss reverse transfer capacitance CCC 220 CCC avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current a e ar repetitive avalanche energy mj diode characteristics parameter min. typ. max. units i s continuous source current CCC CCC 87 (body diode) a i sm pulsed source current CCC CCC 350 (body diode) v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 16 24 ns q rr reverse recovery charge CCC 6.2 9.3 nc mosfet symbol v gs = 4.5v, i d = 17a CCC v gs = 4.5v typ. CCCCCC i d = 17a v gs = 0v v ds = 15v t j = 25c, i f = 17a, v dd = 15v di/dt = 100a/s t j = 25c, i s = 17a, v gs = 0v showing the integral reverse p-n junction diode. v ds = v gs , i d = 250a v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 125c clamped inductive load v ds = 15v, i d = 17a v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v i d = 17a v ds = 15v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 21a v gs = 20v v gs = -20v conditions 7.9 max. 6017 ? = 1.0mhz downloaded from: http:/// www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 3.0v 60s pulse width tj = 175c vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v 60s pulse width tj = 25c 3.0v 0 1 2 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 15v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 42a v gs = 10v downloaded from: http:/// 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 5 10 15 20 25 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v i d = 17a 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse downloaded from: http:/// www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 80 90 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.832 0.0002211.058 0.001171 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri downloaded from: http:/// 6 www.irf.com fig 13. on-resistance vs. gate voltage fig 12. on-resistance vs. drain current fig 16. maximum avalanche energy vs. drain current fig 14a&b. basic gate charge test circuit and waveform fig 15a&b. unclamped inductive test circuit and waveforms t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 2 3 4 5 6 7 8 9 10 v gs, gate -to -source voltage (v) 0 2 4 6 8 10 12 14 16 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 21a t j = 25c t j = 125c 10.0 20.0 30.0 40.0 50.0 60.0 70.0 i d , drain current (a) 4.00 5.00 6.00 7.00 8.00 9.00 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) t j = 25c t j = 125c vgs = 10v 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 5.4a 8.0a bottom 17a downloaded from: http:/// www.irf.com 7 fig 17. for n-channel hexfet power mosfets ? ? ? p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? !"!! ? # $$ ? !"!!%" fig 18a. switching time test circuit fig 18b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - downloaded from: http:/// 8 www.irf.com control fet !" # $ %& !" # #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? " ( %& !" %& !" " ) # * %+ %& !" # # , # - . / # # synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:/// www.irf.com 9 !" !#! $$ |