Part Number Hot Search : 
2SD126 UNR2116 1N6468US MJE1300 LTC3375 UBT1E AP1346CS IRFSL
Product Description
Full Text Search
 

To Download A3G18H500-04S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  a3g18h500--04sr3 1 rf device data nxp semiconductors rf power gan transistor this 107 w asymmetrical doherty rf power gan transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 1805 to 1880 mhz. this part is characterized and performance is guaranteed for applications operating in the 1805 to 1880 mhz band. there is no guarantee of performance when this part is used in applications designed outside of these frequencies. 1800 mhz ? typical doherty single--carrier w--cdma performance: v dd =48vdc, i dqa = 200 ma, v gsb =?5vdc,p out = 107 w avg., input signal par = 9.9 db @ 0.01% probability on ccdf. frequency g ps (db) d (%) output par (db) acpr (dbc) 1805 mhz 15.3 58.4 7.1 ?31.9 1840 mhz 15.4 57.7 7.0 ?33.2 1880 mhz 15.4 57.7 6.7 ?33.8 features ? high terminal impedances for optimal broadband performance ? advanced high performance in--package doherty ? able to withstand extremely high output vswr and broadband operating conditions document number: a3g18h500--04s rev. 0, 05/2017 nxp semiconductors technical data 1805?1880 mhz, 107 w avg., 48 v airfast rf power gan transistor a3g18h500--04sr3 ni--780s--4l figure 1. pin connections (top view) rf outa /v dsa 31 42 rf outb /v dsb rf ina /v gsa rf inb /v gsb peaking carrier ? 2016?2016?2017 nxp b.v. ? 2017 nxp b.v.
2 rf device data nxp semiconductors a3g18h500--04sr3 table 1. maximum ratings rating symbol value unit drain--source voltage v dss 125 vdc gate--source voltage v gs ?8, 0 vdc operating voltage v dd 0to+55 vdc maximum forward gate current @ t c =25 c i gmax 25 ma storage temperature range t stg ?65to+150 c case operating temperature range t c ?55to+150 c operating junction temperature range t j ?55to+225 c absolute maximum junction temperature (1) t max 275 c table 2. thermal characteristics characteristic symbol value unit thermal resistance by infrared measur ement, active die surface--to--case case temperature 76 c, p d = 94.2 w r jc (ir) 0.60 (2) c/w thermal resistance by finite element analysis, junction--to--case case temperature 76 c, p d = 94.2 w r jc (fea) 1.02 (3) c/w table 3. esd protection characteristics test methodology class human body model (per jesd22--a114) 1b charge device model (per jesd22--c101) c3 table 4. electrical characteristics (t a =25 c unless otherwise noted) characteristic symbol min typ max unit off characteristics (4) drain--source breakdown voltage (v gs =?8vdc,i d = 24.3 madc) carrier (v gs =?8vdc,i d = 35.1 madc) peaking v (br)dss 150 150 ? ? vdc on characteristics -- side a, carrier gate threshold voltage (v ds =10vdc,i d = 24.3 madc) v gs(th) ?3.8 ?3.0 ?2.3 vdc gate quiescent voltage (v dd =48vdc,i d = 200 madc, measured in functional test) v gsa(q) ?3.6 ?3.0 ?2.3 vdc gate--source leakage current (v ds =0vdc,v gs =?5vdc) i gss ?7.5 ? ? madc on characteristics -- side b, peaking gate threshold voltage (v ds =10vdc,i d =20madc) v gs(th) ?3.8 ?3.3 ?2.3 vdc gate--source leakage current (v ds =0vdc,v gs =?5vdc) i gss ?7.7 ? ? madc 1. functional operation above 225 c has not been characterized and is not implied. operation at t max (275 c) reduces median time to failure by an order of magnitude; operation beyond t max could cause permanent damage. 2. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.nxp.com/rf and search for an1955. 3. r jc (fea) must be used for purposes related to reliability and limitations on maximum junction temperature. mttf may be estimated by the expression mttf (hours) = 10 [a + b/(t + 273)] , where t is the junction temperature in degrees celsius, a = ?10.3 and b = 8260. 4. each side of device measured separately. (continued)
a3g18h500--04sr3 3 rf device data nxp semiconductors table 4. electrical characteristics (t a =25 c unless otherwise noted) (continued) characteristic symbol min typ max unit functional tests (1,2) (in nxp doherty test fixture, 50 ohm system) v dd =48vdc,i dqa = 200 ma, v gsb =?5vdc,p out = 107 w avg., f = 1840 mhz, single--carrier w--cdma, iq magnitude clipping, input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ 5mhzoffset. [see note on correct biasing sequence.] power gain g ps 14.5 15.4 17.5 db drain efficiency d 53.0 57.7 ? % output peak--to--average ratio @ 0.01% probability on ccdf par 6.3 7.0 ? db adjacent channel power ratio acpr ? ?33.2 ?29.0 dbc load mismatch (in nxp test fixture, 50 ohm system) i dqa = 200 ma, v gsb = ?5 vdc, f = 1840 mhz, 12 sec(on), 10% duty cycle vswr 10:1 at 55 vdc, 575 w pulsed cw output power (3 db input overdrive from 417 w pulsed cw rated power) no device degradation typical performance (2) (in nxp doherty test fixture, 50 ohm system) v dd =48vdc,i dqa = 200 ma, v gsb = ?5 vdc, 1805?1880 mhz bandwidth p out @ 3 db compression point (3) p3db ? 537 ? w am/pm (maximum value measured at the p3db compression point across the 1805?1880 mhz bandwidth) ? ?15 ? vbw resonance point (imd third order intermodulation inflection point) vbw res ? 200 ? mhz gain flatness in 75 mhz bandwidth @ p out = 107 w avg. g f ? 0.3 ? db gain variation over temperature (?30 cto+85 c) ? g ? 0.009 ? db/ c output power variation over temperature (?30 cto+85 c) ? p1db ? 0.004 ? db/ c table 5. ordering information device tape and reel information package a3g18h500--04sr3 r3 suffix = 250 units, 32 mm tape width, 13--inch reel ni--780s--4l 1. part internally input matched. 2. measurements made with device in an a symmetrical doherty configuration. 3. p3db = p avg + 7.0 db where p avg is the average output power measured using an uncli pped w--cdma single--carrier input signal where output par is compressed to 7.0 db @ 0.01% probability on ccdf. note: correct biasing sequence for gan depletion mode transistors turning the device on 1. set v gs to ?5 v 2. turn on v ds to nominal supply voltage (48 v) 3. increase v gs until i ds current is attained 4. apply rf input power to desired level turning the device off 1. turn rf power off 2. reduce v gs downto?5v 3. reduce v ds down to 0 v (adequate time must be allowed for v ds to reduce to 0 v to prevent severe damage to device.) 4. turn off v gs
4 rf device data nxp semiconductors a3g18h500--04sr3 figure 2. a3g18h500--04sr3 test circuit component layout z1 c7 c6 c3 c11 c13 c12 c1 c2 c25 c21 c26 c20 c4 c14 c10 r3 c16 c22 c27 c24 c30 c9 c19 c18 r2 r1 c28 c8 c29 c15 c5 c23 c17 cut out area a3g18h500--04s rev. 3 d96809 v gga v dda v ggb v ddb c p table 6. a3g18h500--04sr3 test circuit component designations and values part description part number manufacturer c1, c2 10 pf chip capacitor gqm2195c2e100jb12 murata c3, c16, c17 10 pf chip capacitor atc100b100gt500xt atc c4, c19 15 pf chip capacitor gqm2195c2e150jb12 murata c5 0.9 pf chip capacitor gqm2195c2er90bb12 murata c6 0.8 pf chip capacitor gqm2195c2er80bb12 murata c7, c21 0.6 pf chip capacitor gqm2195c2er60bb12 murata c8, c9 470 f, 63 v electrolytic capacitor mcgpr63v477m13x26-rh multicomp c10, c11, c12, c13, c22, c23, c24, c25, c26 10 f chip capacitor c3225x7s1h106k tdk c14, c15, c27, c28, c29, c30 10 f chip capacitor c5750x7s2a106m tdk c18 3 pf chip capacitor atc100b3r0bt500xt atc c20 1.3 pf chip capacitor gqm2195c2e1r3bb12 murata r1, r2 3.3 ?, 1/4 w chip resistor crcw08053r30fkea vishay r3 50 ?, 8 w termination chip resistor c8a50z4a anaren z1 1800-2200 mhz band, 90 , 2 db directional coupler x3c20f1-02s anaren pcb rogers ro4350b, 0.020 , r =3.66 d96809 mtl
a3g18h500--04sr3 5 rf device data nxp semiconductors typical characteris tics ? 1805?1880 mhz 1760 acpr f, frequency (mhz) figure 3. single--carrier output peak--to--average ratio compression (parc) broadband performance @ p out = 107 watts avg. 16.4 ?36 60 59 58 57 ?31 ?32 ?33 ?34 d , drain efficiency (%) d g ps , power gain (db) 16.0 15.8 15.6 15.4 1780 1800 1820 1840 1860 1880 1900 1920 56 ?35 acpr (dbc) parc figure 4. intermodulation distortion products versus two--tone spacing two--tone spacing (mhz) 10 ?30 ?40 ?60 1 100 imd, intermodulatio n distortion (dbc) ?50 im5--u im5--l im7--l im7--u figure 5. output peak--to--average ratio compression (parc) versus output power p out , output power (watts) ?1 ?3 40 0 ?2 ?4 output compression at 0.01% probability on ccdf (db) 20 60 80 140 20 80 70 60 50 40 30 d , drain efficiency (%) 100 d acpr parc acpr (dbc) ?45 ?15 ?20 ?25 ?35 ?30 ?40 g ps , power gain (db) 17.0 16.5 16.0 15.5 15.0 14.5 g ps parc (db) ?3.2 ?2.4 ?2.6 ?2.8 ?3.4 ?5 g ps input signal par = 9.9 d b @ 0.01% pr obabilit y on ccdf im3--l 1 v dd =48vdc,i dqa = 200 ma, v gsb = ?5 vdc, f = 1840 mhz single--carrier w--cdma, 3.84 mhz channel bandwidth ?3.0 500 im3--u input signal par = 9.9 d b @ 0.01% pr obabilit y on ccdf 15.0 14.8 14.6 14.4 15.2 16.2 ?10 14.0 ?20 120 v dd =48vdc,p out = 107 w (avg.), i dqa = 200 ma, v gsb =?5vdc single--carrier w--cdma, 3.84 mhz channel bandwidth v dd =48vdc,p out = 10 w (pep), i dqa = 200 ma v gsb = ?5 vdc, two--tone measurements (f1 + f2)/2 = center frequency of 1840 mhz ?1 db = 51.4 w ?2 db = 82.0 w ?3 db = 108.0 w
6 rf device data nxp semiconductors a3g18h500--04sr3 typical characteris tics ? 1805?1880 mhz 1 p out , output power (watts) avg. figure 6. single--carrier w--cdma power gain, drain efficiency and acpr versus output power ?10 ?20 8 20 55 45 35 25 15 d , drain efficiency (%) g ps , power gain (db) 18 16 10 100 500 5 ?60 acpr (dbc) 14 12 10 0 ?30 ?40 ?50 figure 7. broadband frequency response 6 24 f, frequency (mhz) v dd =48vdc p in =0dbm i dqa = 200 ma v gsb =?5vdc 18 15 12 gain (db) 21 9 1350 1450 1550 1650 1750 1850 1950 2050 2150 gain 65 input signal par = 9.9 d b @ 0.01% pr obabilit y on ccdf d g ps acpr 1805 mhz 1840 mhz 1880 mhz 1805 mhz 1840 mhz 1880 mhz 1840 mhz 1805 mhz 1880 mhz v dd =48vdc,i dqa = 200 ma, v gsb =?5vdc single--carrier w--cdma 3.84 mhz channel bandwidth
a3g18h500--04sr3 7 rf device data nxp semiconductors table 7. carrier side load pull performance ? maximum power tuning v dd =48vdc,i dqa = 250 ma, pulsed cw, 10 sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max output power p1db z load (1) ( ? ) gain (db) (dbm) (w) d (%) am/pm ( ) 1805 2.56 ? j6.80 2.88 + j6.46 4.22 ? j7.66 17.9 53.3 215 60.6 ?9 1840 3.18 ? j7.25 3.29 + j6.72 4.33 ? j8.32 17.8 53.2 210 58.6 ?9 1880 3.88 ? j7.65 3.69 + j6.85 4.43 ? j8.45 17.8 53.0 201 58.1 ?9 f (mhz) z source ( ? ) z in ( ? ) max output power p3db z load (2) ( ? ) gain (db) (dbm) (w) d (%) am/pm ( ) 1805 2.56 ? j6.80 2.63 + j6.74 5.40 ? j8.08 16.2 54.2 265 65.1 ?11 1840 3.18 ? j7.25 3.01 + j7.11 5.30 ? j8.38 16.2 54.1 256 63.9 ?12 1880 3.88 ? j7.65 3.52 + j7.35 5.88 ? j9.20 16.2 54.0 251 62.5 ?12 (1) load impedance for optimum p1db power. (2) load impedance for optimum p3db power. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. table 8. carrier side load pull performance ? maximum efficiency tuning v dd =48vdc,i dqa = 250 ma, pulsed cw, 10 sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p1db z load (1) ( ? ) gain (db) (dbm) (w) d (%) am/pm ( ) 1805 2.56 ? j6.80 2.52 + j6.98 3.66 ? j4.40 19.4 51.8 151 71.3 ?23 1840 3.18 ? j7.25 2.81 + j7.53 3.39 ? j4.12 19.6 51.0 126 70.5 ?26 1880 3.88 ? j7.65 3.38 + j7.76 3.61 ? j4.65 19.5 51.1 130 68.1 ?25 f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p3db z load (2) ( ? ) gain (db) (dbm) (w) d (%) am/pm ( ) 1805 2.56 ? j6.80 2.23 + j7.22 3.93 ? j4.40 17.5 52.6 181 75.4 ?29 1840 3.18 ? j7.25 2.63 + j7.72 4.03 ? j4.47 17.6 52.4 175 74.3 ?29 1880 3.88 ? j7.65 3.25 + j8.11 4.53 ? j5.02 17.7 52.5 176 72.2 ?27 (1) load impedance for optimum p1db efficiency. (2) load impedance for optimum p3db efficiency. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. input load pull tuner and test circuit device under test z source z in z load output load pull tuner and test circuit
8 rf device data nxp semiconductors a3g18h500--04sr3 p1db ? typical carrier side load pull contours ? 1840 mhz imaginary ( ? ) 6 810 2 ?2 4 real ( ? ) ?4 ?6 ?8 ?10 imaginary ( ? ) 6 810 2 ?2 4 real ( ? ) ?4 ?6 ?8 ?10 imaginary ( ? ) 6 810 2 ? 2 4 real ( ? ) ?4 ?6 ?8 ?10 imaginary ( ? ) 6 810 2 ? 2 4 real ( ? ) ?4 ?6 ?8 ?10 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 8. p1db load pull output power contours (dbm) figure 9. p1db load pull efficiency contours (%) 54 56 figure 10. p1db load pull gain contours (db) figure 11. p1db load pull am/pm contours ( ) p e 49.5 49 51.5 51 50.5 50 52 52.5 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power 68 62 64 70 60 66 58 20.5 17 19 19.5 18 17.5 18.5 ?18 ?14 ?10 ?12 ?20 ?24 ?8 ?16 53 e p p 21 20 p e e ?22
a3g18h500--04sr3 9 rf device data nxp semiconductors p3db ? typical carrier side load pull contours ? 1840 mhz imaginary ( ? ) 6 810 2 ?2 4 real ( ? ) ?4 ?6 ?8 ?10 imaginary ( ? ) 6 810 2 ?2 4 real ( ? ) ?4 ?6 ?8 ?10 imaginary ( ? ) 6 810 2 ? 2 4 real ( ? ) ?4 ?6 ?8 ?10 imaginary ( ? ) 6 810 2 ? 2 4 real ( ? ) ?4 ?6 ?8 ?10 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 12. p3db load pull output power contours (dbm) figure 13. p3db load pull efficiency contours (%) figure 14. p3db load pull gain contours (db) figure 15. p3db load pull am/pm contours ( ) 51 51.5 52.5 54 64 58 60 62 68 66 72 74 17.5 18.5 16.5 15.5 17 16 19 ?28 ?26 ?24 ?22 ?20 ?18 ?14 ?16 p e 53.5 53 53.5 53 52.5 52 50 50.5 p e 70 p e 15 18 p e ?12
10 rf device data nxp semiconductors a3g18h500--04sr3 table 9. peaking side load pull performance ? maximum power tuning v dd =48vdc,v gsb = 3.1 vdc, pulsed cw, 10 sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max output power p1db z load (1) ( ? ) gain (db) (dbm) (w) d (%) am/pm ( ) 1805 1.66 ? j6.38 1.51 + j6.91 1.79 ? j4.63 17.7 54.8 302 54.5 ?13 1840 2.64 ? j7.07 2.11 + j7.34 2.06 ? j4.97 17.8 54.7 297 54.3 ?13 1880 2.30 ? j7.54 2.13 + j7.92 2.01 ? j5.25 17.8 54.6 292 53.2 ?13 f (mhz) z source ( ? ) z in ( ? ) max output power p3db z load (2) ( ? ) gain (db) (dbm) (w) d (%) am/pm ( ) 1805 1.66 ? j6.38 1.37 + j6.95 2.61 ? j5.42 16.0 56.0 398 58.7 ?13 1840 2.64 ? j7.07 2.02 + j7.47 2.86 ? j5.78 15.9 55.8 378 56.4 ?13 1880 2.30 ? j7.54 2.02 + j8.07 2.87 ? j5.92 16.1 55.6 365 56.8 ?13 (1) load impedance for optimum p1db power. (2) load impedance for optimum p3db power. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. table 10. peaking side load pull performance ? maximum efficiency tuning v dd =48vdc,v gsb = 3.1 vdc, pulsed cw, 10 sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p1db z load (1) ( ? ) gain (db) (dbm) (w) d (%) am/pm ( ) 1805 1.66 ? j6.38 1.46 + j7.24 1.79 ? j3.09 19.3 53.1 203 63.1 ?25 1840 2.64 ? j7.07 2.04 + j7.76 2.02 ? j3.16 19.3 53.0 200 63.8 ?25 1880 2.30 ? j7.54 2.06 + j8.33 2.04 ? j3.54 19.5 53.1 203 62.0 ?24 f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p3db z load (2) ( ? ) gain (db) (dbm) (w) d (%) am/pm ( ) 1805 1.66 ? j6.38 1.38 + j7.43 2.15 ? j2.96 17.7 53.9 247 69.4 ?32 1840 2.64 ? j7.07 1.93 + j8.02 2.37 ? j3.17 17.6 54.1 256 68.9 ?30 1880 2.30 ? j7.54 2.01 + j8.60 2.52 ? j3.41 17.9 54.0 250 67.1 ?30 (1) load impedance for optimum p1db efficiency. (2) load impedance for optimum p3db efficiency. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. input load pull tuner and test circuit device under test z source z in z load output load pull tuner and test circuit
a3g18h500--04sr3 11 rf device data nxp semiconductors p1db ? typical peaking side load pull contours ? 1840 mhz note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power 50 52 54.5 50.5 51 52 51.5 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power 54 58 60 62 56 48 20.5 20 19 19.5 17 18 17.5 18.5 16.5 ?22 ?14 ?16 ?18 ?20 ?12 ?24 p e 54 53.5 54 53.5 53 52.5 p e p e p e ?26 ?28 imaginary ( ? ) 3 45 1 ?4 ?5 2 real ( ? ) ?6 ?3 ? 2 figure 16. p1db load pull output power contours (dbm) imaginary ( ? ) 3 45 1 ?4 ?5 2 real ( ? ) ?6 ?3 ? 2 figure 17. p1db load pull efficiency contours (%) imaginary ( ? ) 3 45 1 ?4 ?5 2 real ( ? ) ?6 ?3 ?2 figure 18. p1db load pull gain contours (db) imaginary ( ? ) 3 45 1 ?4 ?5 2 real ( ? ) ?6 ?3 ?2 figure 19. p1db load pull am/pm contours ( )
12 rf device data nxp semiconductors a3g18h500--04sr3 p3db ? typical peaking side load pull contours ? 1840 mhz imaginary ( ? ) 3 45 1 ?4 ?5 2 real ( ? ) ?6 ?3 ?2 ?7 6 imaginary ( ? ) 3 45 1 ?4 ?5 2 real ( ? ) ?6 ?3 ?2 ?7 6 imaginary ( ? ) 3 45 1 ?4 ?5 2 real ( ? ) ?6 ?3 ? 2 ?7 6 imaginary ( ? ) 3 45 1 ?4 ?5 2 real ( ? ) ?6 ?3 ? 2 ?7 6 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 20. p3db load pull output power contours (dbm) figure 21. p3db load pull efficiency contours (%) figure 22. p3db load pull gain contours (db) figure 23. p3db load pull am/pm contours ( ) 54.5 54 55 53.5 55.5 52.5 53 58 60 62 66 56 54 17.5 18.5 18 16.5 15.5 17 16 15 ?28 ?26 ?24 ?22 ?20 ?18 ?14 ?16 e p 52 55 54.5 54 68 e p 64 58 14.5 e p e p ?12
a3g18h500--04sr3 13 rf device data nxp semiconductors package dimensions
14 rf device data nxp semiconductors a3g18h500--04sr3
a3g18h500--04sr3 15 rf device data nxp semiconductors product documentation, software and tools refer to the following resources to aid your design process. application notes ? an1908: solder reflow attach method for high power rf devices in air cavity packages ? an1955: thermal measurement methodology of rf power amplifiers engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices software ? .s2p file development tools ? printed circuit boards to download resources specific to a given part number: 1. go to http://www .nxp.com/rf 2. search by part number 3. click part number link 4. choose the desired resource from the drop down menu revision history the following table summarizes revisions to this document. revision date description 0 may 2017 ? initial release of data sheet
16 rf device data nxp semiconductors a3g18h500--04sr3 information in this document is provided solely to enable system and software implementers to use nxp products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. nxp reserves the right to make changes without further notice to any products herein. nxp makes no warranty, repr esentation, or guarantee r egarding the sui tability of its products for any particular purpose, nor does nxp assume any li ability arisi ng out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or i ncidental damages. ?typical? parameters that may be provided in nxp data sheets and/ or specifications can and do vary in different applications, and actual performance may vary over time. all operating parameters, including ?typicals,? must be validated for each customer application by customer?s technical experts. nxp does not convey any license under its patent rights nor the rights of others. nxp sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/ salestermsandconditions . nxp, the nxp logo, and airfast are trademarks of nxp b.v. all other pr oduct or service names are the property of their respective owners. e 2017 nxp b.v. how to reach us: home page: nxp.com web support: nxp.com/support document number: a3g18h500--04s rev. 0, 05/2017


▲Up To Search▲   

 
Price & Availability of A3G18H500-04S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X