Part Number Hot Search : 
FW82443B CS322E 3DF0D27 0EVKI 1N5804US BSCD510H ACTR345 SP6830
Product Description
Full Text Search
 

To Download UP9507PQGZ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  up9507 1 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual 3/2/1+2/1-phase driver embedded pwm controller for imvp8 ?? ?? ? intel imvp8 compatible ?? ?? ? support s-line desktop cpu ?? ?? ? thermal sense with vrhot# indication ?? ?? ? rcot +tm control topology ?? ?? ? easy setting ?? ?? ? smooth mode transition ?? ?? ? fast transition response ?? ?? ? 3 integrated 12v mosfet drivers ?? ?? ? embedded bootstrap diode ?? ?? ? 3+2 phase: 1 driver for vcore, 2 drivers for vccgt ?? ?? ? external mosfet driver enable control ?? ?? ? support operation phase disable function ?? ?? ? vcore: 3/2/1-phase ?? ?? ? vccgt: 2/1-phase ?? ?? ? build-in adc for platform parameter setting ?? ?? ? selectable svid vr address ?? ?? ? selectable vboot voltage ?? ?? ? enable control and vr_rdy indicator ?? ?? ? system thermal management ?? ?? ? differential remote voltage sense ?? ?? ? differential current balance sense amplifier ?? ?? ? ocp/ovp/uvp/thermal shutdown ?? ?? ? rohs compliant and halogen free general description features applications ?? ?? ? desktop pc cpu power supplies note: (1) please check the sample/production availability with upi representatives. (2) upi products are compatible with the current ipc/jedec j-std-020 requirement. they are halogen-free, rohs compliant and 100% matte tin (sn) plating that are suitable for use in snpb or pb-free soldering processes. rebmunredr oe gakca pk ramer zgqp7059p ul 06-7x7nfqv ordering information pin configuration the up9507 is an imvp8 compliant desktop cpu voltage regulator controller that integrates a 3-phase pwm controller for vcore and a 2-phase controller for vccgt. the vcore controller can be configured as 3/2/1-phase, and the vccgt controller can be configured as 2/1-phase for platform power design flexibility. this part integrates 3 bootstrap diode embedded 12v mosfet drivers. for the typical 3+2-phase application, the 3-phase vcore controller has one embedded mosfet driver and two pwm outputs. the 2-phase vccgt controller has 2 embedded mosfet drivers. the up9507 combines true differential output voltage sense, differential inductor dcr current sense, input voltage feed- forward sense and adaptive voltage positioning to provide accurately regulated power for desktop cpu. it adopts upis proprietary rcot +tm (robust constant on-time) topology to have fast transient response and smooth mode transition. the up9507 provides vr_rdy indicator and selectable vr parameters, such as svid vr address and vboot voltage. it also provides complete fault protection functions, including over voltage, under voltage, over current, over temperature and under voltage lockout. the up9507 is available in vqfn7x7 - 60l package. imon vr_rdy vcc sclk alert# sdio prog4 prog3 vrhot# en csp3 csp2 csn1 csp1 fbrtn a compa csp dac eap tsense vinsen pvcc cspa comp csn1a csp1a fbrtn ug1a 61 gnd lg1a fb 15 sysfault # csn3 csn2 daca fba eapa tonset isum pwm3_imax pwm2_imaxa ph1a isuma prog1 tsensea imona csn drctrl csn2a csp2a prog2 ug2a lg2a ph2a boot2a ug1 lg1 ph1 boot1 csna boot1a 14 13 12 11 10 9 8 7 6 5 4 3 2 1 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 upi confidential
up9507 2 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual typical application circuit 3+2 phase pwm2_imaxa csp1 tsense vr_rdy sclk alert# sdio vrhot# en prog2 prog1 tonset vcc 5v csn1 prog4 prog3 vinsen v in csp csn gnd boot1a ug1a ph1a lg1a pvcc 12v v in vccgt csp1a csn1a cspa csna fbrtna fba daca eapa vccgt_sense vssgt_sense imona compa isuma tsensea csp2a csn2a boot2a ug2a ph2a lg2a 0.1uf 0.1uf boot1 ug1 ph1 lg1 vcor e boot ug ph lg pwm en vcc gnd 12v pwm3_imax drctrl csp2 csn2 csp3 csn3 fbrtn fb dac eap imon comp isum 1uf 0.1uf v in 0.1uf 0.1uf 0.1uf 1ohm 1ohm vcc_sense vss_sense 0.1uf 1ohm 1ohm 1ohm 0.1uf 0.1uf 0.1uf 0.1uf v in 0.1uf v in 10kohm 1uf boot ug ph lg pwm en vcc gnd 12v 0.1uf v in 1uf sysfault# upi confidential
up9507 3 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual typical application circuit 1+2 phase *note 1: use 1kohm resistor to pull up csn2 and csn3 to vcc. connect csp2 and csp3 to ground. *note 2: a 10kohm resistor must still be connected between drctrl to ground even if externalmosfet driver is unused. pwm2_imaxa csp1 tsense vr_rdy sclk alert# sdio vrhot# en prog2 prog1 tonset vcc 5v csn1 vinsen v in csp csn gnd boot1a ug1a ph1a lg1a pvcc 12v v in vccgt csp1a csn1a cspa csna fbrtna fba daca eapa vccgt_sense vssgt_sense imona compa isuma tsensea csp2a csn2a boot2a ug2a ph2a lg2a 0.1uf 0.1uf boot1 ug1 ph1 lg1 vcor e pwm3_imax drctrl csp2 csn2 csp3 csn3 fbrtn fb dac eap imon comp isum 1uf 0.1uf v in 0.1uf 0.1uf 0.1uf 1ohm 1ohm vcc_sense vss_sense 0.1uf 0.1uf 0.1uf v in 10kohm vcc vcc 1kohm 1kohm *note1 *note2 sysfault# prog4 prog3 upi confidential
up9507 4 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional pin description .o ne ma nn oitcnufnip 1x ami_3m w p etercsidlanretxeroflangiscigolm w pastuptuoti.niplanoitcnuf-itlum asinipsiht .tnetnocretsigerdivserocvehttesotdesuoslasitidnalia rerocvrofrevirdtefsom .tuptuo m w p3esahp .revirdtefsomlanretxefotupnim w pehtotnipsihttcennoc .erocvroftupnignittes xami divsehttesotdng otnipsihtmorfrotsiseratcennoc .liarerocvrofeulav)h12x0(retsigerxamcci 2a xami_2m w p etercsidlanretxeroflangiscigolm w pastuptuoti.niplanoitcnuf-itlum asinipsiht .tnetnocretsigerdivstgccvehttesotdesuoslasitidnalia rerocvrofrevirdtefsom .tuptuo m w p2esahp .revirdtefsomlanretxefotupnim w potnipsihttcennoc .tgccvroftupnignittesaxami divsehttesotdng otnipsihtmorfrotsiseratcennoc .liartgccvrofeulav)h12x0(retsigerxamcci 3l rtcrd .tuptuolortnocelbanerevird tefsom otdesusiti.niplanoitcnuf-itlum asinipsiht k01atcennoc.srevirdtefsom etercsidlanretxellaelbasid/elbane ? sihtmorfrotsiser rehtoynaesutonod.rellortnocehtotesolcrotsisersihtec alpdnadnuorgotnip fognituorecartbcp.nipsihtotyltceridroticapacynatcen noctonod.eulavecnatsiser noitamrofninoitacilppaninoitcesdetalerehtotrefer.no itaredisnoclaicepssahnipsiht .liatedrof 4e snest .erocvroftupnignirotinomlamreht erutarepmetevitagendeificepsatcennoc erutarepmetrverocvrofdng otnipsihtmorfkrowtenrotsimreht)ctn(tneiciffeoc k001esuotdnem mocer.gnisnes ? / atarumybrotsimrehtctn0524= .liatedrofnoitamrofninoitacilppaninoitcesdetalereht ees.)cr30f401fw51pcn( 53 nsc .3esahperocvroftupniesnestnerruclaitnereffidevitage n s i3esahperocvnehw k1ahguorhtccvotnipsihthgihllup,desuton ? erocvtelot3m w pelbasidotrotsiser .noitarugifnocesahp-2nietareporv 63 psc .3esahperocvroftupniesnestnerruclaitnereffidevitiso p si3esahperocvnehw .noitarugifnocesahp-2niderugifnocsirverocvnehw dng otnipsihttrohs,desuton 72 nsc .2esahperocvroftupniesnestnerruclaitnereffidevitage n s i2esahperocvnehw k1ahguorhtccvotnipsihthgihllup,desuton ? erocvtelot2m w pelbasidotrotsiser .noitarugifnocesahp-elgnisnietareporv 82 psc .2esahperocvroftupniesnestnerruclaitnereffidevitiso p si2esahperocvnehw esahp-elgnisniderugifnocsirverocvnehw dng otnipsihttrohs,desuton .noitarugifnoc 91 nsc .1esahperocvroftupniesnestnerruclaitnereffidevitage n 0 11 psc .1esahperocvroftupniesnestnerruclaitnereffidevitiso p 1 1m usi .erocvrofgnisnesdnagnittesdlohserhtnoitcetorptnerru crevo atcennoc tcennoctonod.dlohserhtnoitcetorptnerrucrevoehttesot dng otnipsihtmorfrotsiser daollatotehtotlanoitroporpsinipsihtfotnerructuptuoe ht.nipsihtotroticapacyna sihtmorfrotsiseradna,nipsihtfotuoswolfdnadesnessitn errucdaollatoteht.tnerruc ehtnehw.tnerructuptuolatotehtotlanoitroporpegatlovm usiehtsekam dng otnip x amcciehteussiotwoldellupeblliw#trelaehtylno,v5.1sde ecxenip musinoegatlov fo %031(v59.1sdeecxenip musinoegatlovehtnehw.ecafretnidivshguorhttrela .rellortnocehtnwodtuhsotdeppirteblliwnoitcetorptner rucrevoeht,)tluafed,v5.1 2 1n sc .erocvrofreifilpmaesnestnerruclatotfotupnignitrevni 3 1t esnot .gnittesemit-no m w p .emit-no m w pehttesotdng otnipsihtmorfrotsiseratcennoc .gnittesemit-no m w pemasehterahsrvtgccvdnarverocveht 4 1p sc .erocvrofreifilpmaesnestnerruclatotfotupnignitrevni -non upi confidential
up9507 5 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional pin description .o ne ma nn oitcnufnip 5 1p moc .erocvrofreifilpmarorrepoollortnocfotuptuo ahtiwseiresnirotsiseratcennoc .noitasnepmocpoollortnocegatlovrofdng otnipsihtmorfroticapac 6 1b f .erocvrofreifilpmarorreehtfotupnignitrevni 7 1p ae .erocvrofreifilpmarorreehtfotupnignitrevni-non sihtneewtebrotsiseratcennoc .noitcnuf)enildaol(poordehttesotcaddnanip 8 1c ad .erocvroftuptuo cad ehtrofegatlovecnereferehtsinipsihtfoegatlovtuptuoeh t morfroticapacatcennoc.ntrbfottcepserhtiwderusaem siegatlovcad.liarerocv .ntrbfotnipsiht 9 1n trbf .erocvrofnruterkcabdeefegatlovtuptuo egatlovlaitnereffidehtottupnignitrevni .tnemerusaem egatlovtuptuocadnitniopecnereferehtsintrbf.reifilpm aesnes ,tniopesnesnruterkcabdeefegatlovtuptuorossecorpehto tyltceridnipsihttcennoc .esnes_ssvyleman 0 2n omi .erocvrofrotinomtnerructuptuo otdng otnipsihtmorfrotsiseratcennoc sihtfotnerructuptuoeht.rverocvrofnoitcnufgnitropert nerructuptuolatigidtnemelpmi tuoswolfdnadesnessitnerrucdaollatoteht.tnerrucdaoll atotehtotlanoitroporpsinip ehtotlanoitroporpegatlovnomiehtsekam dng otnipsihtmorfrotsiseradna,nipsihtfo nomiehtstrevnoc)cda(retrevnoclatigid-ot-golanani-tl iubeht.tnerructuptuolatot nacroticapaca.ecafretnidivsaivgnitropertnerructuptu oroftnetnoclatigidotegatlov nomiehttahteton.nomifoemitesnopserehttsujdaotdng otnomimorfdetcennoceb lanoitcnufninoitcesdetalerehtees.gnitropertnerructu ptuolatigidrofylnodesusi .noitcelesroticapacnomirofnoitpircsed 1 2# tluafsys .rotacidni#tluafsys .tuptuoniard-neponasinipsiht 2 2n esniv .esnesegatlovtupniegatsrewop tupniegatsrewopehtotnipsihttcennocyltcerid v ni vegatlovtupniegatsrewoprofnipsihtnoegatlovehtsesnes rellortnoceht. ni .noitaluclacemit-no m w profdesuoslasiegatlovnesniveht.noitceted 3 2c cv .tiucriclortnoccigolroftupniylppus naaivecruosegatlovv5aotnipsihttcennoc .tiucriclortnoccigolehtroftupniylppusehtsiccv.retli fcr 4 23 gorp .3nipgnittesnoitcnuf -itlum dnatsoobnoitisnartdivcimanydtesotdesusinipsiht otnipsihtmorfrotsiseratcennoc.lortnocelbasid/elbane noitcnuftsoobtneisnartesahp .sretemarapowtesehttcelesotdng 5 24 gorp .4nipgnittesnoitcnuf rotsisernoitasnepmoclanretnitesotdesusinipsiht .noitcnuftsoobtneisnartesahp-itlumrofhtdiwemit-no m w pehtdnaeulav)tni_pmocr( .sretemarapowtesehttcelesotdng otnipsihtmorfrotsiseratcennoc 6 2# tohrv .rotacidnilamreht divs eht.wolevitcasitidnaerutcurtsniardneponasinipsiht nahtrehgihsierutarepmetrvehttahtmroftalpehtetacidni ot#tohrvstressarellortnoc 601sinoitressa#tohrvfoeulaveht.dlohserhteht o lamrehtdivsfoeulavehtdna,c 301sitrela o .c 7 2y dr_rv .rotacidniydaer rv sihtpullup.hgihevitcasitidnaerutcurtsniardneponasin ipsiht seog(ydr_rvstressarellortnoceht.ecruosegatlovaotrot siserreporpahguorhtnip .dnam mocdivstpeccaotydaersirellortnocehttahtetacidniot)h gih 8 2k lcs .tupnikcolc divs 9 2# trela .enil#trela divs 0 3o ids .o/iatad divs upi confidential
up9507 6 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional pin description .o ne ma nn oitcnufnip 1 3n e .tupnilortnocelbanepihc wolebnipsihtllup.pihcehtselbanev8.0evobanipsihtllup l iarrewopegatlovttvehtfotuptuoehtotdetcennocyllacipy ts'ti.pihcehtelbasidotv3.0 .draobrehtom ehtno 2 3a nomi .tgccvrofrotinomtnerructuptuo otdng otnipsihtmorfrotsiseratcennoc sihtfotnerructuptuoeht.rvtgccvrofnoitcnufgnitropert nerructuptuolatigidtnemelpmi tuoswolfdnadesnessitnerrucdaollatoteht.tnerrucdaoll atotehtotlanoitroporpsinip otlanoitroporpegatlovanomiehtsekam dng otnipsihtmorfrotsiseradna,nipsihtfo anomiehtstrevnoc)cda(retrevnoclatigid-ot-golanani-t liubeht.tnerructuptuolatoteht nacroticapaca.ecafretnidivsaivgnitropertnerructuptu oroftnetnoclatigidotegatlov ehttahteton.anomifoemitesnopserehttsujdaotdng otanomimorfdetcennoceb l anoitcnufninoitcesdetalerehtees.gnitropertnerructup tuolatigidrofylnodesusianomi .noitcelesroticapacanomirofnoitpircsed 3 3a ntrbf .tgccvrofnruterkcabdeefegatlovtuptuo egatlovlaitnereffidehtottupnignitrevni .tnemerusaem egatlovtuptuoacadnitniopecnereferehtsiantrbf.reifil pmaesnes ,tniopesnesnruterkcabdeefegatlovtuptuorossecorpehto tyltceridnipsihttcennoc .esnes_tgssvyleman 4 3a cad .tgccvroftuptuo cad ehtrofegatlovecnereferehtsinipsihtfoegatlovtuptuoeh t roticapacatcennoc.antrbfottcepserhtiwderusaem siegatlovacad.liartgccv .antrbfotnipsihtmorf 5 3a pae .tgccvrofreifilpmarorreehtfotupnignitrevni-non sihtneewtebrotsiseratcennoc .noitcnuf)enildaol(poordehttesotacaddnanip 6 3a bf .tgccvrofreifilpmarorreehtfotupnignitrevni 7 3a pmoc .tgccvrofreifilpmarorrepoollortnocfotuptuo ahtiwseiresnirotsiseratcennoc .noitasnepmocpoollortnocegatlovrofdng otnipsihtmorfroticapac 8 3a nsc tgccvrofreifilpmaesnestnerruclatotfotupnignitrevni 9 31 gorp .1nipgnittesnoitcnuf rotsiseratcennoc.sserddarv divstesotdesusinipsiht eht.srotalugeregatlovowtehtrofsserddarv divsehttcelesotdng otnipsihtmorf .]30,10[ro]20,00[,]00,10[,]10,00[satesebnac]tgccv/e rocv[fosserddarv divs ehtwollofyltcirtsdnaliatedrofnoitamrofninoitacilppa ninoitcesdetalerehtotrefer .gnittesdednem mocer 0 4a psc .tgccvrofreifilpmaesnestnerruclatotfotupnignitrevni -non 1 4a musi .tgccvrofgnisnesdnagnittesdlohserhtnoitcetorptnerru crevo atcennoc tcennoctonod.dlohserhtnoitcetorptnerrucrevoehttesot dng otnipsihtmorfrotsiser daollatotehtotlanoitroporpsinipsihtfotnerructuptuoe ht.nipsihtotroticapacyna sihtmorfrotsiseradna,nipsihtfotuoswolfdnadesnessitn errucdaollatoteht.tnerruc ehtnehw.tnerructuptuolatotehtotlanoitroporpegatlova musiehtsekam dng otnip ehteussiotwoldellupeblliw#trelaehtylno,v5.1sdeecxen ipamusinoegatlov v59.1sdeecxenipamusinoegatlovehtnehw.ecafretnidivsh guorhttrelaxamcci .rellortnocehtnwodtuhsotdeppirteblliwnoitcetorptner rucrevoeht,)v5.1fo %031( 2 4a 1psc .1esahptgccvroftupniesnestnerruclaitnereffidevitiso p sitgccvnehw .dng otnipsihttrohs,esahp-1saderugifnoc 3 4a 1nsc .1esahptgccvroftupniesnestnerruclaitnereffidevitage n sitgccvnehw .dng otnipsihttrohs,esahp-1saderugifnoc 4 4a 2psc .2esahptgccvroftupniesnestnerruclaitnereffidevitiso p tefsom ehtelbasidot ehtotrefer.dng otnipsihttrohs,)a2gl,a2hp,a2gu,a2toob(esahpsihtfore vird .liatedrofnoitamrofninoitacilppaninoitcesdetaler upi confidential
up9507 7 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional pin description .o ne ma nn oitcnufnip 5 4a 2nsc .2esahptgccvroftupniesnestnerruclaitnereffidevitage n ehtelbasidot ccvotnipsihthgihllup,)a2gl,a2hp,a2gu,a2toob(esahpsi htforevirdtefsom k1ahguorht ? noitacilppaninoitcesdetalerehtotrefer.esahpsihtelba sidotrotsiser .liatedrofnoitamrofni 6 4a esnest .tgccvroftupnignirotinomlamreht erutarepmetevitagendeificepsatcennoc erutarepmetrvtgccvrofdng otnipsihtmorfkrowtenrotsimreht)ctn(tneiciffeoc k001esuotdnem mocer.gnisnes ? / atarumybrotsimrehtctn0524= .liatedrofnoitamrofninoitacilppaninoitcesdetalereht ees.)cr30f401fw51pcn( 7 4a 1toob .1esahptgccvrofrevirdetagreppurofylppuspartstoob ylppusehtsinipsiht croticapacpartstoobehttcennoc.revirdetagtefsomreppu ehtroftupni toob neewteb ehtnonrutotegrahcehtsedivorproticapacpartstoobeht.n ipa1hpdnanipa1toob csacclm fu1.0tsaeltaesu.tefsomreppu toob cerusekam dna, toob esolcdecalpsi .rellortnocehtot 8 4a 1gu .1esahptgccvroftuptuorevirdetagreppu reppufoetagehtotnipsihttcennoc n ehwenimretedotyrtiucricnoitcetorphguorht-toohsehtyb derotinom sinipsiht.tefsom .tefsomreppuffo/nonrutot 9 4a 1hp .1esahptgccvrofedon hctiws tefsomreppufotniojehtotnipsihttcennoc r eppurofdnuorgnruterehtsadesusinipsiht.niardtefsomre woldnarotcudni,ecruos noitcetorphguorht-toohsehtybderotinom sinipsihtnoegatlov.evirdgnitaolftefsom .tefsomrewolehtnonrutotnehwenimretedotyrtiucric 0 5a 1gl .1esahptgccvroftuptuorevirdetagrewol rewolfoetagehtotnipsihttcennoc n ehwenimretedotyrtiucricnoitcetorphguorht-toohsehtyb derotinom sinipsiht.tefsom .tefsomreppuehtnonrutot 1 5c cvp .revird tefsom deddebmeroftupniylppus egatlovv21aotnipsihttcennoc ehtotesolcyrevdecalpcclm fu0.1tsaeltahtiw dng otnipsihtssapybdna,ecruos .srevirdtefsom deddebmeehtroftupniylppusehtsiccvp.nipccvp 2 52 gorp .2nipgnittesnoitcnuf .)toobv(egatlovputratslaitiniehttesotdesusinipsiht ,v0ottesebnactoobveht.toobvtcelesotdng otnipsihtmorfrotsiseratcennoc .gnittestoobvemasehterahsliartgccvdnaliarerocveht.v 5.1rov2.1,v50.1,v8.0 3 5a 2gl .2esahptgccvroftuptuorevirdetagrewol rewolfoetagehtotnipsihttcennoc otyrtiucricnoitcetorphguorht-toohsevitpadaehtybdero tinom sinipsiht.tefsom .tefsomreppuehtnonrutotnehwenimreted 4 5a 2hp .2esahptgccvrofedon hctiws tefsomreppufotniojehtotnipsihttcennoc r eppurofdnuorgnruterehtsadesusinipsiht.niardtefsomre woldnarotcudni,ecruos noitcetorphguorht-toohsehtybderotinom sinipsihtnoegatlov.evirdgnitaolftefsom .tefsomrewolehtnonrutotnehwenimretedotyrtiucric 5 5a 2gu .2esahptgccvroftuptuorevirdetagreppu reppufoetagehtotnipsihttcennoc n ehwenimretedotyrtiucricnoitcetorphguorht-toohsehtyb derotinom sinipsiht.tefsom .tefsomreppuffo/nonrutot 6 5a 2toob .2esahptgccvrofrevirdetagreppurofylppuspartstoob ylppusehtsinipsiht croticapacpartstoobehttcennoc.revirdetagtefsomreppu ehtroftupni toob neewteb ehtnonrutotegrahcehtsedivorproticapacpartstoobeht.n ipa2hpdnanipa2toob csacclm fu1.0tsaeltaesu.tefsomreppu toob cerusekam dna, toob esolcdecalpsi .rellortnocehtot 7 51 gl .1esahperocvroftuptuorevirdetagrewol rewolfoetagehtotnipsihttcennoc n ehwenimretedotyrtiucricnoitcetorphguorht-toohsehtyb derotinom sinipsiht.tefsom .tefsomreppuehtnonrutot upi confidential
up9507 8 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional pin description .o ne ma nn oitcnufnip 8 51 hp .1esahperocvrofedon hctiws , ecruostefsomreppufotniojehtotnipsihttcennoc reppurofdnuorgnruterehtsadesusinipsiht.niardtefsomr ewoldnarotcudni noitcetorphguorht-toohsehtybderotinom sinipsihtnoegatlov.evirdgnitaolftefsom .tefsomrewolehtnonrutotnehwenimretedotyrtiucric 9 51 gu .1esahperocvroftuptuorevirdetagreppu reppufoetagehtotnipsihttcennoc n ehwenimretedotyrtiucricnoitcetorphguorht-toohsehtyb derotinom sinipsiht.tefsom .tefsomreppuffo/nonrutot 0 61 toob .1esahperocvrofrevirdetagreppurofylppuspartstoob ylppusehtsinipsiht croticapacpartstoobehttcennoc.revirdetagtefsomreppu ehtroftupni toob neewteb ehtnonrutotegrahcehtsedivorproticapacpartstoobeht.n ip1hpdnanip1toob csacclm fu1.0tsaeltaesu.tefsomreppu toob cerusekam dna, toob esolcdecalpsi .rellortnocehtot dapdesopxe .dnuorg l ortnoccigoldnasrevirdtefsom deddebmefodnuorgehtsidapdesopxeeht .dng otdetcennocdnabcpegralaotderedlosebtsumtidna,stiucr ic upi confidential
up9507 9 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional block diagram por svid/adc shutdown /calibration vr_rdy en vcc on time generation and pwm control logic ramp generation tonset pwm2/imaxa pwm3/imax fbrtn prog1 prog2 sdio alert# sclk vrhot# csp1 csn1 dac vinsen gnd fbrtna tsensea eap imon csn csp fb comp uvp ovp eap + 400mv tsense eap - 400mv operation phase selection gm gm gm current balance gm per-phase ocp isum csp2 csn2 csp3 csn3 i csn i ofs i csn i csn i csn daca i csna pvcc gate control logic boot1 ug1 ph1 lg1 boot1a ug1a ph1a lg1a boot2a ug2a ph2a lg2a csp1a csn1a gm gm csp2a csn2a operation phase selection on time generation and pwm control logic current balance per-phase ocp eapa imona csna cspa fba compa uvp ovp eapa + 400mv eapa - 400mv gm isuma i csna i ofsa i csna tonset vinsen prog4 prog3 drctrl i csna imax imaxa ramp generation tonset gate control logic gate control logic ocp & svid iccmax alert ocp & svid iccmax alert sysfault# d/a buf d/a buf upi confidential
up9507 10 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description power input and power on reset the up9507 has two power inputs vcc and pvcc. vcc is the 5v supply input for control logic circuit of the controller. rc filter to vcc is required for locally bypassing this supply input. pvcc is the supply power of three integrated 12v mosfet gate drivers. vcc and pvcc have individual power on reset (por) function. vinsen is the power stage input voltage sense pin, and it also has power on reset function. the controller monitors the vinsen voltage for pwm on- time calculation. en is the chip enable input pin. logic high to this pin enables the controller, and logic low to this pin disables the controller. the above four inputs (vcc, pvcc, vinsen and en) are monitored to determine whether the controller is ready for operation. figure 1 shows the power ready detection circuit. the vcc voltage is monitored for power on reset with typically 4.3v threshold at its rising edge. the pvcc voltage is monitored for power on reset with typically 8v threshold at its rising edge. the vinsen voltage is monitored for power on reset with typically 6v threshold at its rising edge. when vcc, pvcc and vinsen are all ready, the controller waits for en to start up. when en pin is driven above 0.8v, the controller begins its start up sequence. when en pin is driven below 0.3v, the controller will be turned off, and it will clear all fault states to prepare to next soft-start once the controller is re-enabled. note that only vcc or en toggle will clear all fault state, vinsen or pvcc toggle is not used for clearing fault state. anytime any one of the four inputs falls below their power on reset level will shutdown the controller. vcc pvcc en vinsen 4.3v 8v 0.8v 6v po r figure 1. circuit for power ready detection controller start up sequence when vcc, pvcc, vinsen inputs are all ready, the controller waits for the en signal to initiate the power on sequence. after en goes high, the controller waits for a delay time t a (<2.5ms) then vr_rdy goes high to indicate that the pwm controller is ready for accepting svid command. at the same time, the output voltage starts to ramp up to vboot with always slow slew rate for non-zero vboot case. after output voltage settled to vboot, the controller assert alert#. then the start up sequence is over. figure 2 shows the typical start up sequence for non-zero vboot case. time interval t b is determined by the vboot voltage and the slow slew rate. figure 3 shows the typical start up sequence of zero-vboot case. for the zero vboot case, the output voltage slew rate is determined by the setvid command. note that vr_rdy goes high after delay time t a in both cases. pvcc vinsen vcc en vtt (pullup bias rail) vr_rdy (open drain) t a vout (non-zero vboot) alert# (open drain) t b figure 2. start up sequence and enable timing with non-zero vboot t a svid bus 1st setvid command t b pvcc vinsen vcc en vtt (pullup bias rail) vr_rdy (open drain) vout (zero vboot) alert# (open drain) figure 3. start up sequence and enable timing with zero vboot upi confidential
up9507 11 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description initial parameter setting there are four essential vr initial parameters that need to be determined such as vcore svid register 0x21h value, vccgt svid register 0x21h value, svid vr address and output initial start up voltage vboot. they are programmed by pwm3_imax, pwm2_imaxa, prog1 and prog2 as shown in figure 4. each parameter setting is detailed in the following sections. prog3 pwm3_imax a/d converter prog4 pwm2_imaxa r imax r imaxa r 5 r 6 r 7 r 8 prog1 prog2 r 1 r 2 r 3 r 4 figure 4. initial parameter setting vcore svid register (iccmax) value setting (pwm3_imax) the pwm3_imax is a multi-functional pin, which is used to set specific svid register value and outputs pwm signal for external mosfet driver. refer to figure 4, a resistor r imax connected from this pin to ground sets the vcore svid register 0x21h (iccmax) value. during the initial setting period, a 10ua current source is turned on for a period of time to flow out of this pin through r imax to create voltage drop on this pin. this voltage is digitized by an internal 8- bit a/d converter and stored in vcore svid register 0x21h (iccmax). the a/d converter scales 2.56v into 256 levels, which means 10mv represents 1a. for example, if the svid register 0x21h (iccmax) value to be set to 100a (64h), the voltage should be 10mv x 100 = 1v. therefore the resistor r imax is 1v / 10ua = 100k ? . the programmable range is from 00h to ffh (0a to 256a). if the pin voltage is greater than 2.56v, the svid register 0x21h value will still be ffh. note that this setting is only for determining svid register value, and is not used for over current protection or svid iccmax alert function. vccgt svid register (iccmax) value (pwm2_imaxa) the pwm2_imaxa is a multi-functional pin, which is used to set specific svid register value and outputs pwm signal for external mosfet driver. refer to figure 4, a resistor r imaxa connected from this pin to ground sets the vccgt svid register 0x21h (iccmax) value. during the initial setting period, a 10ua current source is turned on for a period of time to flow out of this pin through r imaxa to create voltage drop on this pin. this voltage is digitized by an internal 8- bit a/d converter and stored in vccgt svid register 0x21h (iccmax). the a/d converter scales 2.56v into 256 levels, which means 10mv represents 1a. for example, if the svid register 0x21h (iccmax) value to be set to 60a (3ch), the voltage should be 10mv x 60 = 0.6v. therefore the resistor r imaxa is 0.6v / 10ua = 60k ? . the programmable range is from 00h to ffh (0a to 256a). if the pin voltage is greater than 2.56v, the svid register 0x21h value will still be ffh. note that this setting is only for determining svid register value, and is not used for over current protection or svid iccmax alert function. svid vr address (prog1) the up9507 features selectable svid vr address for maximized flexibility in platform design. prog1 is a function setting pin, which is used to set this essential parameter. refer to figure 4, resistors r 1 and r 2 connected in parallel from this pin to ground sets the svid vr address. the svid vr address of [vcore/ vccgt] can be set as [00, 01], [01, 00], [00, 02] or [01, 03]. this makes the svid vr address interchangeable/selectable, and provides more design flexibility per different power requirement. table 1 shows the recommended resistance value for prog1 function setting. strictly follows the recommended resistor value in prog1 setting. note that for the rail with svid address being set to 02h or 03h, its vboot voltage will be fixed at 1.05v, regardless of the prog2 pin setting. see initial start up voltage (vboot) (prog2) section for detail. table 1. svid vr address setting .on sserdda divs ,erocv( )tgccv dednem mocer1gorp k(eulavrotsiser ?? ? ?? l ellarapni) r 1 r 2 1h 10,h0 00n epo 2h 00,h1 03 12 1 3h 20,h0 04 24 2 4h 30,h1 07 43 4 oteulavrotsiserdednem mocerehtwollofyltcirts:eton eulavecnatsiser.tluafmetsyscihportsatacdiova k65nahtretaerg ? .neddibrofsi upi confidential
up9507 12 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description operation phase disable function the up9507 supports operation phase disable function to further increase the design flexibility. platform designer can choose to disable some phases to meet their design requirement. both vcore and vccgt rail support operation phase disable function. the minimum operation phase number is 1+1-phase. in general, to disable a specific phase, pull up csnx to vcc through 1k ? resistor and tie cspx to ground for that phase. the controller detects all the csnx and cspx voltage at vcc power on reset to determine operation phase number. to let vccgt in single-phase operation, pull up csn2a to vcc through 1k ? resistor and tie csp1a to ground. the csn1a and csp1a should be remain in normal connection with no change. in this case, the embedded mosfet driver with pin name suffix 2a is disabled. table 2 shows the operation phase number setting. strictly follow table 2 setting to disable phases. incorrect prog1 setting and incorrect pin cspx/csnx pull up/down connection will cause catastrophic fault during start up. table 2. operation phase number setting noitarugifnoc detroppus noitarepo esahp rebmun deddebme revird rebmun tegratotwol/hgihllup,noitcennocnip 2ps c2 ns c3 ps c3 ns ca 2ps ca 2ns ca 1ps ca 1nsc esahp-2+3 2+ 32 + 1- -- -- -- -- -- -- -- - 2+ 22 + 1- -- -d n gc c v- -- -- -- - 2+ 12 + 1d n gc c vd n gc c v- -- -- -- - 1+ 31 + 1- -- -- -- -d n gc cv lamron noitcennoc )2eton( lamron n oitcennoc )2eton( 1+ 21 + 1- -- -d n gc c vd n gc cv lamron noitcennoc )2eton( lamron n oitcennoc )2eton( 1+ 11 + 1d n gc c vd n gc c vd n gc cv lamron noitcennoc )2eton( lamron n oitcennoc )2eton( .noitcennoclamronsetoned"--":1eton .noitcennoclamronniebdluohsa1nscdnaa1psc,noitarepoe sahpelgnisnitgccvrof:2eton k01a:3eton ? sirevirdtefsomlanretxefinevedng otlrtcrdneewtebdetcennocebllitstsumrotsiser .desunu k1esu:4eton ? .ccvotpullupnehwrotsiserpullup nwod/pullupniptcerrocnidnagnittes1gorptcerrocni.elb asidesahprofelbatehtwollofyltcirts:5eton .putratsgnirudtluafcihportsatacesuaclliwnoitcennoc upi confidential
up9507 13 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description initial start up voltage (vboot) (prog2) the up9507 features selectable initial start up voltage (vboot). prog2 is a function setting pin, which is used to set this essential parameter. refer to figure 4, resistors r 3 and r 4 connected in parallel from this pin to ground sets the initial start up voltage (vboot). the vboot can be set to 0v, 0.8v, 1.05v, 1.2v or 1.5v. both the vcore rail and vccgt rail share the same vboot setting. table 3 shows the recommended resistance value for prog2 function setting. although vcore and vccgt share the same vboot setting, there is an exception for the rail with svid address being set to 02h and 03h. for the rail with svid address being set to 02h or 03h, its vboot voltage will be fixed at 1.05v, regardless of the prog2 pin setting. the vboot voltage of other rail (svid address = 00h or 01h) still follows prog2 pin setting. in this case, the vboot voltage for svid address [00, 02], or [01, 03] will be different. for example, when vboot is set to 0v (prog2 pin short to gnd) and svid address is set to [00, 02], the vboot voltage for the rail with address = 00 and address = 01 is 0v and 1.05v, respectively. table 3. vboot voltage setting .o n) v(toobv lellarapdednem mocer k(epytrotsiser ?? ? ?? ) r 3 r 4 10 0 n epo 28 . 03 . 43 3 35 . 13 12 1 42 . 16 10 2 55 0. 14 24 2 note: for the rail with svid address being set to 02h or 03h, its vboot voltage will be fixed at 1.05v, regardless of the prog2 pin setting. the vboot voltage of other rail (svid address = 00h or 01h) still follows prog2 pin setting. dynamic vid transition boost, multi-phase tb enable control (prog3) refer to figure 4, the prog3 pin is used to set two vr parameters: dynamic vid transition boost and load transient boost enable control. the up9507 provides dynamic vid transition boost function to improve the dynamic vid (d- vid) transition performance. both the vcore rail and vccgt rail share the same setting. in addition, this part provides load transient boost function to improve load transient response when in multi-phase operation. similarly, both the vcore rail and vccgt rail share the same setting. table 4 shows the recommended resistance value for prog3 function setting. table 4. d-vid transition boost and tb enable setting .on daol tneisnart nitsoob esahp-itlum noitarepo cimanyd div noitisnart tsoob dednem mocer rotsiserlellarap k(epyt ?? ? ?? ) r 5 r 6 1 elbasid vm0 60n epo 2v m5 73 . 43 3 3v m0 93 12 1 4v m50 16 10 2 5v m02 14 24 2 6v m53 13 33 3 7v m05 17 43 4 8v m56 18 66 5 9 elbane vm0 62 82 8 0 1v m5 70 1 10 11 1 1v m0 90 5 10 51 2 1v m50 10 2 20 81 3 1v m02 10 7 20 72 4 1v m53 10 6 30 33 5 1v m05 10 7 40 65 6 1v m56 1n ep on epo upi confidential
up9507 14 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description internal rcomp_int and multi-phase tb on-time setting (prog4) refer to figure 4, the prog4 pin is used to set two vr parameters: internal compensation resistor rcomp_int and pwm on-time for load transient boost function. there is an external resistor rcomp connected to comp pin for voltage loop compensation. the internal compensation resistor (rcomp_int) will be in series with the external rcomp only when the vr is in single-phase operation to improve the load transient response. when the vr is in multi-phase operation, the rcomp_int will be short circuit. the other parameter to be set is the pwm on-time of load transient boost for load transient response improvement. this parameter is only effective when this function is enabled (set by prog3). table 5 shows the recommended resistance value for prog4 function setting. table 5. rcomp_int and tb on-time setting .on rofemit-no bt nierocv esahp-itlum rofemit-no bt nitgccv esahp-itlum roftni_pmocr nierocv esahp-elgnis roftni_pmocr nitgccv esahp-elgnis dednem mocer rotsiserlellarap k(epyt ?? ? ?? ) r 1 r 2 1 sn006 sn006 k5+ ? k5+ ? 0n epo 2 k51+ ? 3. 43 3 3 k51+ ? k5+ ? 3 12 1 4 k51+ ? 6 10 2 5 sn008 k5+ ? k5+ ? 4 24 2 6 k51+ ? 3 33 3 7 k51+ ? k5+ ? 7 43 4 8 k51+ ? 8 66 5 9 sn008 sn006 k5+ ? k5+ ? 2 82 8 01 k51+ ? 01 10 11 11 k51+ ? k5+ ? 05 10 51 21 k51+ ? 02 20 81 31 sn008 k5+ ? k5+ ? 07 20 72 41 k51+ ? 06 30 33 51 k51+ ? k5+ ? 07 40 65 61 k51+ ? nep on epo upi confidential
up9507 15 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description external mosfet driver control the drctrl pin is used for controlling the enable/disable of external mosfet drivers. make sure to connect a 10k ? resistor from this pin to gnd and place this resistor close to the controller. this resistor is used to generate the reference current for thermal sense by tsense and tsensea. do not use any other resistance value. this 10k ? resistor must still be connected between drctrl to ground even if external mosfet driver is unused. connect this pin to a resistor r iso and then connect to the enable control pin of the external mosfet drivers as shown in figure 5. the recommended resistance value of r iso is between 1k ? to 10k ? . the drctrl is a noise sensitive pin, therefore the pcb trace routing should be kept away from other nets, especially the switching signals. it is required to keep at least 20mil space to other nets. 10kohm drctrl r iso to mosfet driver enable pi n noise sensitive. keep trace routing away from other nets . figure 5. drctrl connection pwm on time setting the pwm on-time is set by an external resistor r ton connected between tonset pin and gnd. the controller senses vinsen voltage to obtain input voltage information for pwm on-time calculation. both the vcore rail and vccgt rail share the same pwm on-time setting. the pwm on- time can be calculated as below equation. 10 0 ) ( ? ? ? ? ? ? ? ? = ton in out on r v v ns t table 6 lists the switching frequency and the recommended resistor r ton value (with condition: v in = 12v, v out = 1.2v). for example, given v in = 12v, v out = 1.2v, r ton = 50k ? , t on is about 500ns by above equation. the pwm frequency is about 200khz. note that the resistance value of r ton value must be greater than 10k ? to ensure the pwm on- time calculation circuit in normal operation. table 6. switching frequency and resistor r ton ycneuqerfgnihctiws )zhk( r otsiser dednem mocer r not k( ?? ? ?? ) 00 20 5 00 33 .33 00 45 2 00 50 2 00 67 .61 rrotsiserfo muminim eht:eton not k01sieulav ? . soft startthe slew rate of output voltage during soft start operation and dynamic vid voltage change is determined internally. place a mlcc c dac between dac and fbrtn (daca and fbrtna for vccgt). the recommended capacitance of c dac is 10nf. the slew rate during soft start operation is always slow for non-zero vboot case. the slow slew rate is determined by the processor in svid register 2ah. dynamic vid change and slew rate the controller accepts setvid command via svid bus for output voltage change during normal operation. this allows the output voltage to change while the dc/dc converter is running and supplying current to the load. this is commonly referred to as vid on-the-fly (vid otf). a vid otf event may occur under either light or heavy load condition. this voltage change direction can be upward or downward. per setvid command, the slew rate can be fast or slow. the slow slew rate is determined by the svid register 2ah, which can only be programmed by the processor. the default value of slow slew rate is 1/2 of fast slew rate. the value of fast slew rate is 12mv/us. output voltage differential sense the up9507 uses differential sense by a high-gain low- offset error amplifier for output voltage differential sense as shown in figure 6. the cpu voltage is sensed by the fb and fbrtn pins (fba and fbrtna for vccgt). fb pin is connected to the positive remote sense pin vcc_sense of the cpu via the resistor r fb . fbrtn pin is connected to the negative remote sense pin vss_sense of cpu directly. (vccgt_sense and vssgt_sense for vccgt). the error amplifier compares the v fb with v eap (= v dac - i csn x r drp ) to regulate the output voltage. gm r comp_int comp i csn fb r fb vcc_sense positive voltage remote sense pin of cpu csp csn eap dac r drp fbrtn c dac vss_sense negative voltage remote sense pin of cpu c comp r csn c csn reference voltage r comp figure 6. output voltage differential sense upi confidential
up9507 16 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description total load current sense the up9507 uses a low input offset current sense amplifier (csa) to sense the total load current flowing through inductors for droop function by csp and csn (cspa and csna for vccgt) as shown in figure 7. r ph1 r ph2 r ph3 1ohm ph1 ph2 ph3 1ohm 1ohm v core v core v cor e c csn r csn csp csn i csn figure 7. total load current sense the voltage across c csn is proportional to the total load current, and the output current of csa (i csn ) is also proportional to the total load current of the voltage regulator. the sensed current i csn represents the total output current of the regulator, and it is directly used for droop function, and further internally mirrored for svid iccmax alert function, total output over current protection, and output current reporting. i csn is calculated as follows. csn dc out csn r n r i i = in this inductor current sensing topology, r ph and c csn must be selected according to the equation below: n c r r l k csn ph dc = where r dc is the dcr of the output inductor l, n is the operation phase number. theoretically, k should be equal to 1 to sense the instantaneous total load current. but in real application, k is usually between 1.2 to 1.8 for better load transient response. note that the resistance value of r csn must be less than 2k ? to ensure the current sensing circuit in normal operation.droop (load line) setting as shown in figure 6, the current i csn denotes the sensed total load current, which is mirrored to the eap pin. when load current increases, i csn also increases and creates a voltage drop across r drp , and makes v eap lower than the v dac as follows. dr p csn dc out dac drp csn dac eap r n r r i v r i v v ? ? ? ? ? ? ? ? = = where r dc is the dcr of output inductor, n is the operation phase number, and i out denotes the total load current. in steady state, the output voltage is regulated to v eap . as the total load current i out increases, i csn increases proportionally, making v eap decreases accordingly. this makes the output voltage also decreases linearly as the total output current increases, which is also known as active voltage positioning (avp). the slope of output voltage decrease to total load current increase is referred to as load line. the load line is defined as follows n r r r i v line l oad csn drp dc out out = ? ? = iccmax alert and total output over current protection (ocp) as shown in figure 8, the sensed current i csn is mirrored internally and fed to isum pin (isuma for vccgt) as i sum for svid iccmax alert function and total output over current protection (ocp). a resistor r isum is connected from isum pin to gnd. this current flows through the resistor r isum , creating voltage drop across it. as the total load current increases, the voltage on isum pin (v isum ) increases proportionally. when the isum pin voltage is greater than typically 1.5v, the svid iccmax alert will be triggered, and then the alert# will be pulled low to indicate the processor that the voltage regulator is in iccmax condition. the output current level of triggering svid iccmax alert is calculated as follows. dc csn isum iccmax out r r n r i = 5.1 _ i csn csp csn r csn c csn isum r isum imon r imon c imon a/d converter svid register ocp iccmax alert 1.5v 1.95v figure 8. iccmax alert and total output ocp when the isum pin voltage further increases to greater than the ocp threshold (default value is typically 130% of svid iccmax alert threshold of 1.5v) for a specific delay time, the total output current protection will be triggered. vr_rdy will be pulled low immediately, both ugx and lgx will be held low, and all pwm outputs will in high- impedance state to let driver turns off all mosfets to shutdown the regulator. the other unaffected voltage regulator will also shut down. the total output ocp is a latch-off type protection, and it can only be reset by vcc or en toggling. avoid adding capacitor to the isum pin. additional capacitance to this pin will affect the current level of svid iccmax alert and the total output ocp. the default output current level of triggering total output ocp is calculated as follows. upi confidential
up9507 17 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description 3 .1 5.1 _ = dc csn isum ocp out r r n r i total output ocp and operating phase number the total output ocp level is usually designed for the voltage regulator that is operated in full phase condition by hardware setting. the actual operating phase number is controlled by the svid setps command. when the operating phase number is decreased, the total output ocp level is decreased as well. the total output ocp level is changed per actual operating phase number. table 7 shows the total output ocp ratio per actual operating phase number and the hardware configuration. table 7. total output ocp and operating phase number oitar pcotuptuolatot noitidnocgnitarepo esahp- 3e sahp-2 e sahp-1 erawdrah noitarugifnoc esahp- 31- -2 1/5 esahp- 2- -13 /2 esahp- 1- -- -1 output current reportingrefer to figure 8, the sensed current i csn is also separately mirrored and fed to imon pin (imona for vccgt) as i imon for svid output current reporting function. connect a resistorr imon from imon pin to gnd. the current i imon flows through the resistor r imon , creating voltage drop across it. as the total load current increases, the voltage on imon pin (v imon ) increases proportionally. an internal analog-to-digital converter (adc) converts v imon to a digital content for output current reporting through svid interface. as v imon voltage increases, the svid register 0x15h content increases. the imon voltage has typically 600mv offset, which means v imon = 600mv and svid register 0x15h = 00h. the adc input range is typically 1.5v, which means the svid register 0x15h = ffh when v imon = 2100mv. further increase of v imon (>2.1v) is allowed, but the adc results will remain at ffh. capacitor can be added to the imon pin to adjust the response time of current reporting. the imon pin is for digital output current reporting only, not for svid iccmax alert function or ocp. the total output current level for svid register 0x15h = ffh is calculated as follows. dc csn imon ffh hx out r r n r i svid = = 5.1 15 0 note that the resistance value of r imon must be between 10k ? to 60k ? to ensure the controller in normal operation. imon/imona capacitor selection the capacitor c imon connected from imon to gnd (c imona for imona) is used to adjust the response time of imon voltage change to load current change. it is recommended to add a capacitor to the imon pin. however, too large capacitance for c imon is improper, and will affect the accuracy in digital output current reporting. due to the embedded a/ d conversion circuit to the imon pin, the rc time constant (tau) should be adequate to ensure correct operation and digital current reporting accuracy. use 4 x tau = 160us as the rule of thumb to determine c imon . after resistor r imon is determined, the c imon is then calculated by imon imon r c 6 10 160 4 then choose a capacitance value that is closest to but not greater than the calculation for c imon . over voltage protection (ovp) the controller monitors the voltage on fb pin (fba for vccgt) for over voltage protection. the controller monitors the voltage on fb pin (fba for vccgt) for under voltage protection. after output voltage ramps up to vboot, the controller initiates ovp function. once v fb exceeds v eap + ovp threshold for a specific delay time, ovp is triggered. vr_rdy will be pulled low immediately, ugx will be held low, lgx will be held high, and pwm outputs will be low to let driver turns on low side mosfet and turns off high side mosfet to protect cpu. since the low side mosfet is turned on, the regulator output capacitor will be discharged and output voltage decreases as well. when fb pin voltage decreases to lower than typical 0.5v, lgx will be held low (pwm outputs turns to high impedance state) to turn off the low side mosfet to avoid negative output voltage. the other unaffected voltage regulator will also shut down. the ovp is a latch-off type protection, and it can only be reset by vcc or en toggling. the ovp detection circuit has a fixed delay time to prevent false trigger. under voltage protection (uvp) the controller monitors the voltage on fb pin (fba for vccgt) for under voltage protection. after output voltage ramps up to vboot, the controller initiates uvp function. once v fb is lower than v eap - uvp threshold for a specific delay time, ovp is triggered. vr_rdy will be pulled low immediately, both ugx and lgx will be held low, and all pwm outputs will in high-impedance state to let driver turns off all mosfets to shutdown the regulator. the other unaffected voltage regulator will also shut down. the uvp is a latch-off type protection, and it can only be reset by vcc or en toggling. the uvp detection circuit has a fixed delay time to prevent false trigger. per-phase over current protection in addition to the total output current ocp, the controller provides per-phase current ocp to protect the voltage regulator. the controller uses dcr current sensing technique to sense the inductor current in each phase for per-phase over current protection and current balance as shown in figure 9. in this inductor current sensing topology, the time constant can expressed as follows. csx cspx dc c r r l k = upi confidential
up9507 18 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description where l is the output inductor, r dc is its parasitic resistance and k is a constant. theoretically, if k = 1, the sensed current signal i csnx can be expressed as follows. csnx dc lx csnx r r i i = v in lr dc v core r cspx c csx r csnx cspx csnx i csnx i lx figure 9. phase current sense the sensed current i csnx represents the current in each phase, and it is compared to a current source (typical = 100ua) for per-phase ocp. if the inductor current of any of the active operating phase exceeds the threshold for a specific delay time, the per-phase ocp is triggered. vr_rdy will be pulled low immediately, both ugx and lgx will be held low, and all pwm outputs will in high-impedance state to let driver turns off all mosfets to shutdown the regulator. the other unaffected voltage regulator will also shut down. the per-phase ocp is a latch-off type protection, and it can only be reset by vcc or en toggling. note that the resistance value of r csnx must be less than 2k ? to ensure the current sensing circuit in normal operation. the resistance of r csnx and the default per-phase ocp level can be obtained using equation as follows. ua r i r dc perphase ocp csnx 100 _ = thermal monitoring and vrhot#the tsense pin (tsensea for vccgt) is used for voltage regulator thermal monitoring. connect a negative temperature coefficient (ntc) thermistor network from tsense pin to gnd to implement this function as shown in figure 10. the ntc thermistor is placed close to the hottest point of the regulator, normally close to the inductor and low-side mosfet of phase 1. a precision current source flows out of the tsense pin through the temperature sense network to create a voltage drop v tsense on this pin. as regulator temperature rises, the v tsense decreases. therefore the controller detects the v tsense to obtain regulator thermal information for svid thermal alert and vrhot# function. the controller asserts vrhot# when the sensed temperature is higher than the value of svid register 0x22h (temp_max), in which the default value is 6ah (106 o c). the temperature for svid thermal alert and vrhot# assertion is 103 o c and 106 o c, respectively. the curve of tsense (tsensea for vccgt) pin voltage and the sensed temperature is shown in figure 11. either vcore or vccgt regulator can trigger the vrhot# as long as the temperature of any of the two regulators exceeds the maximum temperature threshold. it is highly recommended to use 7.32k ? as r p , and 100k ? / = 4250 ntc thermistor by murata (ncp15wf104f03rc). r s is reserved for fine tune. r s =0 r ntc =10 0 kohm tsense r p =7.32 kohm i tsense v tsense1 vrhot svid thermal alert v tsense3 figure 10. regulator temperature sense 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 90 100 110 120 130 140 150 sensed temperature ( o c) sense/tsensa pin voltage (mv) figure 11. tsense/tsensea pin voltage and sensed temperature control loopthe up9507 adopts the upi proprietary rcot +tm control technology. the rcot uses the constant on-time modulator. the output voltage is sensed to compare with the internal high accurate reference voltage. the reference voltage is commanded by cpu through the svid interface. the amplified error signal v comp is compared to the internal ramp to initiate a pwm on-time. the rcot +tm features easy design, fast transient response and is smooth mode transition and especially suitable for powering the microprocessor. upi confidential
up9507 19 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description divs xeh v cad )v( divs xeh v cad )v( divs xeh v cad )v( divs xeh v cad )v( divs xeh v cad )v( divs xeh v cad )v( divs xeh v cad )v( 00x 00 00. 05 2x 00 34. 0a 4x 05 16. 0f 6x 00 08. 04 9x 05 89. 08 bx 05 61. 1c dx 05 43.1 10x 00 52. 06 2x 05 34. 0b 4x 00 26. 00 7x 05 08. 05 9x 00 99. 09 bx 00 71. 1d dx 00 53.1 20x 05 52. 07 2x 00 44. 0c 4x 05 26. 01 7x 00 18. 06 9x 05 99. 0a bx 05 71. 1e dx 05 53.1 30x 00 62. 08 2x 05 44. 0d 4x 00 36. 02 7x 05 18. 07 9x 00 00. 1b bx 00 81. 1f dx 00 63.1 40x 05 62. 09 2x 00 54. 0e 4x 05 36. 03 7x 00 28. 08 9x 05 00. 1c bx 05 81. 10 ex 05 63.1 50x 00 72. 0a 2x 05 54. 0f 4x 00 46. 04 7x 05 28. 09 9x 00 10. 1d bx 00 91. 11 ex 00 73.1 60x 05 72. 0b 2x 00 64. 00 5x 05 46. 05 7x 00 38. 0a 9x 05 10. 1e bx 05 91. 12 ex 05 73.1 70x 00 82. 0c 2x 05 64. 01 5x 00 56. 06 7x 05 38. 0b 9x 00 20. 1f bx 00 02. 13 ex 00 83.1 80x 05 82. 0d 2x 00 74. 02 5x 05 56. 07 7x 00 48. 0c 9x 05 20. 10 cx 05 02. 14 ex 05 83.1 90x 00 92. 0e 2x 05 74. 03 5x 00 66. 08 7x 05 48. 0d 9x 00 30. 11 cx 00 12. 15 ex 00 93.1 a0x 05 92. 0f 2x 00 84. 04 5x 05 66. 09 7x 00 58. 0e 9x 05 30. 12 cx 05 12. 16 ex 05 93.1 b0x 00 03. 00 3x 05 84. 05 5x 00 76. 0a 7x 05 58. 0f 9x 00 40. 13 cx 00 22. 17 ex 00 04.1 c0x 05 03. 01 3x 00 94. 06 5x 05 76. 0b 7x 00 68. 00 ax 05 40. 14 cx 05 22. 18 ex 05 04.1 d0x 00 13. 02 3x 05 94. 07 5x 00 86. 0c 7x 05 68. 01 ax 00 50. 15 cx 00 32. 19 ex 00 14.1 e0x 05 13. 03 3x 00 05. 08 5x 05 86. 0d 7x 00 78. 02 ax 05 50. 16 cx 05 32. 1a ex 05 14.1 f0x 00 23. 04 3x 05 05. 09 5x 00 96. 0e 7x 05 78. 03 ax 00 60. 17 cx 00 42. 1b ex 00 24.1 01x 05 23. 05 3x 00 15. 0a 5x 05 96. 0f 7x 00 88. 04 ax 05 60. 18 cx 05 42. 1c ex 05 24.1 11x 00 33. 06 3x 05 15. 0b 5x 00 07. 00 8x 05 88. 05 ax 00 70. 19 cx 00 52. 1d ex 00 34.1 21x 05 33. 07 3x 00 25. 0c 5x 05 07. 01 8x 00 98. 06 ax 05 70. 1a cx 05 52. 1e ex 05 34.1 31x 00 43. 08 3x 05 25. 0d 5x 00 17. 02 8x 05 98. 07 ax 00 80. 1b cx 00 62. 1f ex 00 44.1 41x 05 43. 09 3x 00 35. 0e 5x 05 17. 03 8x 00 09. 08 ax 05 80. 1c cx 05 62. 10 fx 05 44.1 51x 00 53. 0a 3x 05 35. 0f 5x 00 27. 04 8x 05 09. 09 ax 00 90. 1d cx 00 72. 11 fx 00 54.1 61x 05 53. 0b 3x 00 45. 00 6x 05 27. 05 8x 00 19. 0a ax 05 90. 1e cx 05 72. 12 fx 05 54.1 71x 00 63. 0c 3x 05 45. 01 6x 00 37. 06 8x 05 19. 0b ax 00 01. 1f cx 00 82. 13 fx 00 64.1 81x 05 63. 0d 3x 00 55. 02 6x 05 37. 07 8x 00 29. 0c ax 05 01. 10 dx 05 82. 14 fx 05 64.1 91x 00 73. 0e 3x 05 55. 03 6x 00 47. 08 8x 05 29. 0d ax 00 11. 11 dx 00 92. 15 fx 00 74.1 a1x 05 73. 0f 3x 00 65. 04 6x 05 47. 09 8x 00 39. 0e ax 05 11. 12 dx 05 92. 16 fx 05 74.1 b1x 00 83. 00 4x 05 65. 05 6x 00 57. 0a 8x 05 39. 0f ax 00 21. 13 dx 00 03. 17 fx 00 84.1 c1x 05 83. 01 4x 00 75. 06 6x 05 57. 0b 8x 00 49. 00 bx 05 21. 14 dx 05 03. 18 fx 05 84.1 d1x 00 93. 02 4x 05 75. 07 6x 00 67. 0c 8x 05 49. 01 bx 00 31. 15 dx 00 13. 19 fx 00 94.1 e1x 05 93. 03 4x 00 85. 08 6x 05 67. 0d 8x 00 59. 02 bx 05 31. 16 dx 05 13. 1a fx 05 94.1 f1x 00 04. 04 4x 05 85. 09 6x 00 77. 0e 8x 05 59. 03 bx 00 41. 17 dx 00 23. 1b fx 00 05.1 02x 05 04. 05 4x 00 95. 0a 6x 05 77. 0f 8x 00 69. 04 bx 05 41. 18 dx 05 23. 1c fx 05 05.1 12x 00 14. 06 4x 05 95. 0b 6x 00 87. 00 9x 05 69. 05 bx 00 51. 19 dx 00 33. 1d fx 00 15.1 22x 05 14. 07 4x 00 06. 0c 6x 05 87. 01 9x 00 79. 06 bx 05 51. 1a dx 05 33. 1e fx 05 15.1 32x 00 24. 08 4x 05 06. 0d 6x 00 97. 02 9x 05 79. 07 bx 00 61. 1b dx 00 43. 1f fx 00 25.1 42x 05 24. 09 4x 00 16. 0e 6x 05 97. 03 9x 00 89.0 table 8. imvp8 vid table upi confidential
up9507 20 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description table 9. supported svid data and configuration register xedn ie manretsige rs secc at luafe dn oitpircsed h0 0d iredne vo rh 7 2d irednev h1 0d itcudor po rh f 1d itcudorp h2 0n oisivertcudor po rh 1 0n oisivertcudorp h5 0d ilocotor po rh 50 rellortnocehtlocotorpdivsfonoisrevtahwseifitnedi .stroppus h6 0y tilibapa co rh 18 rv divsehtseifitnedi,retsigerdeppamtib erayrtemeletlanoitpoehtfohcihwdnaseitilibapac .detroppus h0 11 _sutat sm w p-w,m- rh 00 .detressasilangis#trelaehtretfadaerretsigeratad .rvehtfosutatsehtgniyevnoc h1 12 _sutat sm w p-w,m- rh 00 ehtgniyevnoc.atad2_sutatsgniwohsretsigeratad .subdivsehtfosutats h5 1t nerructuptu om w p-w,m- r- -. tnerructuptuodegareva hc 1d aertsal_2_sutat sm w p-w,m- rh 00 tahtatad2sutatsehtfoypocasniatnocretsigersiht .dnam moc)2sutats(gerteg ehthtiwdaertsalsaw h1 2x am_cc im roftalp o r- - mroftalpehtmumixam cciehtgniniatnocretsigeratad .stroppus h2 2x am_pme tm roftalp o rh a6 ehtxam erutarepmetehtgniniatnocretsigeratad .stressa#tohrvlevelehtdnatroppusmroftalp nitamrofyranib o 061=ha6.e.i,c o .c h4 2t saf_r so rh c0 welstsaffoytilibapacehtgniniatnocretsigeratad ,su/vm nitamrofyranib.niatsusnacmroftalpehtetar .su/vm21=hc0.e.i h5 2w ols_r so rh 60 welswolsfoytilibapacehtgniniatnocretsigeratad .su/vm6=h60.e.i,su/vm nitamrofyranib.etar h6 2t oob vm roftalp o r- -. spetsdivniegatlovtoobvgniniatnocretsigeratad ha 2r otceles wels wol sr etsam w rh 1 0. etarwelslautcatcelfertsumretsigeretarwels hb 2y cnetaltixe4s po rh 59 stneserpertahteulavdedocnenasdlohretsigersiht su061stneserperh59.ycnetaltixe4sp rveht hc 2y cnetaltixe3s po rh 54 stneserpertahteulavdedocnenasdlohretsigersiht su5stneserperh54.ycnetaltixe3sp rveht hd 2y daer divsotelban eo rh 9c stneserpertahteulavdedocnenasdlohretsigersiht su4032stneserperh9c.ydaerotelbane rveht h0 3x amtuo vr etsam w rh bf stesdnaretsam ehtybdem margorpsiretsigersiht .troppuslliw rvehtdiv mumixam eht upi confidential
up9507 21 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual functional description xedn ie manretsige rs secc at luafe dn oitpircsed h1 3g nittes di vr etsam w rh 00 divdem margorpyltnerrucgniniatnocretsigeratad .egatlov h2 3e tatsrewo pr etsam w rh 00 rewopdem margorptnerrucehtgniniatnocretsiger .etats h3 3t esffo egatlo vr etsam w rh 00 rofgnittesdivehtotdeddaspetsdivnitesffotes .gninigram egatlov h4 3g ifnoc rvitlu mr etsam w rh 10 elpitlum serugifnochcihwretsigerataddeppamtib .subemasehtnoroivahebsrv h5 3r dagerte sr etsam w r- - ehtfoegarotsyraropmetrofretsigerdaphctarcs .retsigerretnioprdagertes h2 4d iv-1div iw / rh 00 i- 1divinidenifedtnerrucxam ehthtiwdetaicossadiv h3 4i -1div iw / rh ff t essidivehtnehwdetcepxe)tib/a1(tnerrucxam eht div-1divi:sa > div-2divi> div h4 4d iv-2div iw / rh 00 i- 2divinidenifedtnerrucxam ehthtiwdetaicossadiv h5 4i -2div iw / rh ff :satessidivehtnehwdetcepxetnerrucxam eht div-2divi > div-3divi> div h6 4d iv-3div iw / rh 00 i- 3divinidenifedtnerrucxam ehthtiwdetaicossadiv h7 4i -3div iw / rh ff :satessidivehtnehwdetcepxetnerrucxam eht div-3divi > div table 9. supported svid data and configuration register (cont.) > > > upi confidential
up9507 22 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual (note 1) supply input voltage vcc to gnd ---------------------------------------------------------------------------------------------- ---- -0.3v to +6v supply input voltage pvcc to gnd --------------------------------------------------------------------------------------------- -- -0.3v to +15v vinsen ----------------------------------------------------------------------------------------------------------------------------------------- -0.3v to +30v bootx to phx ------------------------------------------------------------------------------------------------------------------------------ -0.3v to +15v phx to gnd dc ---------------------------------------------------------------------------------------------------------------------------------------- -0.7v to +15v < 200ns ------------------------------------------------------------------------------------------------------------------------------- -8v to +30v bootx to gnd dc --------------------------------------------------------------------------------------------------------------------------------- -0.3v to (pvcc+15v) < 200ns -------------------------------------------------------------------------------------------------------------------------------- -0.3v to +42v ugx to phx dc ---------------------------------------------------------------------------------------------------------------------- -0.3v to (bootx-phx+0.3v) < 200ns ------------------------------------------------------------------------------------------------------------------ -5v to (bootx-phx+0.3v) lgx to gnd dc --------------------------------------------------------------------------------------------------------------------------------- -0.3v to (pvcc+15v) < 200ns -------------------------------------------------------------------------------------------------------------------------- -5v to (pvcc+0.3v) other pins ------------------------------------------------------------------------------------------------------------------------------------- -0.3v to +6v storage temperature range ---------------------------------------------------------------------------------------------------- ------- -65 o c to +150 o c junction temperature ------------------------------------------------------------------------------------------------------------------------------------ 150 o c lead temperature (soldering, 10 sec) ----------------------------------------------------------------------------------------- ------------------- 260 o c esd rating (note 2) hbm (human body mode) --------------------------------------------------------------------------------------------------------------------- 2kv mm (machine mode) ------------------------------------------------------------------------------------------------------------ ----------------- 200v package thermal resistance (note 3) vqfn7x7 - 60l ja ---------------------------------------------------------------------------------------------------------------------- 31 o c/w vqfn7x7 - 60l jc ----------------------------------------------------------------------------------------------------------------------- 2 o c/w power dissipation, p d @ t a = 25 o c vqfn7x7 - 60l ------------------------------------------------------------------------------------------------------------------------------------ 3.23w (note 4) operating junction temperature range ------------------------------------------------------------------------------------------- -40 o c to +125 o c operating ambient temperature range ------------------------------------------------------------------------------------------- -40 o c to +85 o c supply input v oltage vcc ----------------------------------------------------------------------------------------------------- ---------- 4.5v to 5.5v supply input v oltage pvcc ---------------------------------------------------------------------------------------------------- ------- 10.8v to 13.2v absolute maximum rating thermal information recommended operation conditions note 1. stresses listed as the above absolute maximum ratings may cause permanent damage to the device. these are for stress ratings. functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. note 2. devices are esd sensitive. handling precaution recommended. note 3. ja is measured in the natural convection at t a = 25 o c on a low effective thermal conductivity test board of jedec 51-3 thermal measurement standard. note 4. the device is not guaranteed to function outside its operating conditions. upi confidential
up9507 23 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual electrical characteristics retemara pl obmy ss noitidnoctse tn i mp y tx am s tinu tupniylppus ccv dlohserhtrop cc vr op ccv gnisircc v0 . 43 . 45 . 4v siseretsyh rop cc vs yh ropccv - -3 . 0- -v tnerrucylppu si ccv ,v0= divtgccvdnaerocv,v5=ne gnihctiwson m w p - -7- -a m tnerrucnwodtuh si ndhs_ccv v0=n e- -0 5- -a u 4spnitnerrucylppu si 4sp_ccv etats4sp,v5=n e- -0 5 1- -a u tupniylppus ccvp dlohserhtrop ccv pr op ccvp gnisirccv p- -8- -v siseretsyh rop ccv ps yh ropccvp - -2- -v tnerrucylppu si ccvp ,v0=divtgccvdnaerocv,v5=ne gnihctiwson m w p - -0 5 2- -a u tnerrucnwodtuh si ndhs_ccvp v0=n e- -- -0 3a u reifilpmarorre egatlovtesff ov )ae(so 1 -- -1v m ecnatcudnoc-snar tm g- -0 20 2- -v /au tcudorphtdiwdnabnia gg )ae(wb ngisedybdeetnarau g- -0 1- -z hm ycaruccaegatlov cad ycaruccaegatlov ca dv cad otegatnecrep,v25.1otv57.0= div div 5.0 -- -5 . 0% v547.0otv5.0= di v8 -- -8 v m v594.0otv52.0= di v0 1 -- -0 1v m etar wels tsafetar wel st saf_r st saf_divte s0 12 1- - /vm su wolsetar wel sw ols_rs =ha2x0retsigerdivs,wols_divtes 10 56 - - /vm su (vcc = 5v, pvcc = 12v, t a = 25 o c, unless otherwise specified) upi confidential
up9507 24 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual electrical characteristics retemara pl obmy ss noitidnoctse tn i mp y tx am s tinu tupnine hgihtupn iv hi 8. 0- -- -v woltupn iv li - -- -3 . 0v tnerruc wol-llu pi lp_ne 12 3 a u esnes niv dlohserhtrop nesni vr op r_nesniv gnisirnesni v- -6- -v dlohserhtrop nesni vr op f_nesniv gnillafnesni v- -5 . 4- -v tnerructupn ii nesniv v21=nesniv,v5=n e- -0 3- -a u gnittesemit-no m w p emit-no m w pt no ,v2.1= div,v21=nesniv r tesnot k05= ? zhk002=wsf, - -0 0 5- -s n emit-ffo mumini mt nim_ffo noitarepoesahpelgni s- -0 0 3- -s n gnim mustnerruclatotrofreifilpmaesenestnerruc egatlovtesff ov )ae(so 1 -- -1v m tnerrucsaibtupn ii ae v psc ngisedybdeetnaraug,v2.1 =0 1 -- -0 1a n tnerrucgnicruos mumixa mi crsxam 00 1- -- -a u tcudorphtdiwdnabnia gg )ae(wb ngisedybdeetnarau g- -0 1- -z hm ecnalabtnerrucesahprofreifilpmaesenestnerruc egatlovtesff ov )ae(so 1 -- -1v m tnerrucsaibtupn ii ae v xpsc ngisedybdeetnaraug,v2.1 =0 1 -- -0 1a n tnerrucgnicruos mumixa mi crsxam 00 1- -- -a u tcudorphtdiwdnabnia gg )ae(wb ngisedybdeetnarau g- -0 1- -z hm tuptuo m w p egatlov woltuptu ov )mwp(lo i knis am4 =- -- -2 . 0v egatlovhgihtuptu ov )mwp(ho i ecruos am4 =7 . 4- -- -v egakaeletatsecnadepmihgih i 0kael_mwp v mwp v0 =1 -- -0a u i 1kael_mwp v mwp v5 =0 - -1a u tnerrucecruo si crs_mwp doirepgnittesnoitcnufgnirud,v5=n e- -0 1- -a u gnittesretsiger xamccidivs ycarucca d/a nipaxami_2m w pdnaxami_3m w p retsigerdivsdaer,v15.1=egatlov h12x0 74 11 5 15 5 1c ed upi confidential
up9507 25 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual electrical characteristics retemara pl obmy ss noitidnoctse tn i mp y tx am s tinu #tohrv,#trela,oids,klcs )oids,klcs(egatlov woltupn iv divs_li - -- -5 4. 0v )oids,klcs(egatlovhgihtupn iv divs_hi 56. 0- -- -v ,oids(ecnatsisernwodllup )#tohrv,#trela r divs_no 4- -3 1 ? ,oids,klcs(tnerrucegakael )#tohrv,#trela i divs_l 1 -- -1a u #tluafsys,ydr_rv egatlov woltuptu ov lo i knis am4 =- -- -2 . 0v tnerrucegakaeltuptu oi l v5otpullu p- -- -1a u noitcetorprofgnirotinomtnerruc ycaruccarorrimtnerru ci mus iot nsc oita r5 90 0 15 0 1% gnitroperrofgnirotinomtnerruc ycaruccarorrimtnerru ci nom iot nsc oita r5 90 0 15 0 1% egnarecnatsiser nom ir nomi 0 1- -0 6k ? egatlovtesff ov sfo_nomi h00=tuodaerh51x0retsigerdiv s- -0 0 6- -v m egatlovtuptu ov nomi hff=tuodaerh51x0retsigerdiv s- -0 01 2- -v m poordrofgnirotinomtnerruc ycaruccarorrimtnerru ci pae iot nsc oita r5 90 0 15 0 1% 4gorp,3gorp,2gorp,1gorp tnerrucecruo si crsgorp - -0 4- -a u tnerrucegakae li kael_gorp gnittesnoitcnufretfa,v0=xgorp doirep - -- -1a u gnirotinomlamreht tnerrucecruo si esnest r,v5=ne lrtcrd k01= ? 7 50 63 6a u dlohserhttressa#trel av 1esnest 301=tlusercdaerutarepmet o c- -2 8 1- -v m dlohserhttressa-ed#trel av 2esnest 001=tlusercdaerutarepmet o c- -3 9 1- -v m dlohserhttressa#tohr vv 3esnest 601=tlusercdaerutarepmet o c- -2 7 1- -v m dlohserhttressa-ed#tohr vv 4esnest 301=tlusercdaerutarepmet o c- -2 8 1- -v m lortnocelbanerevird tefsomlanretxe levelhgihegatlovtuptu ov no_lrtcrd r,v5=ne lrtcrd k01= ? - -4 . 2- -v levelwolegatlovtuptu ov l_lrtcrd r,v0=ne lrtcrd k01= ? - -0- -v upi confidential
up9507 26 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual electrical characteristics retemara pl obmy ss noitidnoctse tn i mp y tx am s tinu srevirdetag tefsom ecruosetagrepp ur crs_gu v,am08=tnerrucecruos toob v- hp = v21 - -24 ? knisetagrepp ur kns_gu v,am08=tnerrucknis toob v- hp v21 =- -12 ? ecruosetagrewo lr crs_gl am08=tnerrucecruo s- -24 ? knisetagrewo lr kns_gl am08=tnerruckni s- -8 . 06 .1 ? emitdae dt gl-gu_td v1> glotv1< gu mor f- -0 3- -s n emitdae dt gu-gl_td v1> guotv1< gl mor f- -0 3- -s n edoid partstoob egatlovdrawro fv f am5.3=tnerrucsaibdrawro f- -4 . 0- -v noitcetorpegatlovrevo dlohserhtpv ov pvo v bf v- pae - -0 0 4- -v m emityaled pv ot yaled_pvo - -5- -s u noitcetorpegatlovrednu dlohserhtpv uv pvu v pae v- bf - -0 0 4- -v m yaled pv ut yaled_pvu - -5 . 7- -s u noitcetorptnerrucrevo divs(noitressa#trela dlohserht)trela xamcci v trela_musi egatlovxmusierusae m- -5 . 1- -v dlohserhtpcotnerruclato tv pco_musi esahplluf,egatlovxmusierusaem noitarepo - -5 9. 1- -v yaled pcotnerruclato tt yaled_1pco - -0 2- -s u dlohserhtpco esahp-re pi 2pco ierusaem xnsc tnerru c- -0 0 1- -a u yaled pco esahp-re pt yaled_2pco - -6- -s u noitcetorpnwodtuhslamreht dlohserhtnwodtuhslamreh tt pto ngisedybdeetnarau g- -0 6 1- - o c upi confidential
up9507 27 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual package information note 1.package outline unit description: bsc: basic. represents theoretical exact dimension or dimension target min: minimum dimension specified. max: maximum dimension specified. ref: reference. represents dimension for reference use only. this value is not a device specification. typ. typical. provided as a general value. this value is not a device specification. 2.dimensions in millimeters. 3.drawing not to scale. 4.these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed 0.15mm. vqfn7x7 - 60l 6.90 - 7.10 pin 1 mark bottom view - exposed pad 5.20 - 5.80 0.15 - 0.25 5.20 - 5.80 0.30 - 0.50 6.90 - 7.10 0.20 ref 0.00 - 0.05 0.80 - 1.00 upi confidential
up9507 28 up9507-ds-c3000, june. 2015 www.upi-semi.com conceptual important notice upi and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. upi products are sold subject to the taerms and conditions of sale supplied at the time of order acknowledgment. however, no responsibility is assumed by upi or its subsidiaries for its use or application of any product or circuit; nor for any infringements of patents or other rights of third parties which may result from its use or application, including but not limited to any consequential or incidental damages. no upi components are designed, intended or authorized for use in military, aerospace, automotive applications nor in systems for surgical implantation or life-sustaining. no license is granted by implication or otherwise under any patent or patent rights of upi or its subsidiaries. copyright ( c ) 2015, upi semiconductor corp. upi semiconductor corp. headquarter 9f.,no.5, taiyuan 1st st. zhubei city, hsinchu taiwan, r.o.c. tel : 886.3.560.1666 fax : 886.3.560.1888 upi semiconductor corp. sales branch office 12f-5, no. 408, ruiguang rd. neihu district, taipei taiwan, r.o.c. tel : 886.2.8751.2062 fax : 886.2.8751.5064 upi confidential


▲Up To Search▲   

 
Price & Availability of UP9507PQGZ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X